References
<A NAME="RD26804ST-1">1</A>
Fry SC.
Biochem. J.
1982,
204:
449
<A NAME="RD26804ST-2">2</A>
Zhu Z.
Synlett
1997,
133
K13:
<A NAME="RD26804ST-3A">3a</A>
Kase H.
Kaneko M.
Yamada K.
J. Antibiot.
1987,
40:
450
<A NAME="RD26804ST-3B">3b</A>
Yasuzawa T.
Shirahata K.
Sano H.
J. Antibiot.
1987,
40:
455
OF-4949-I-IV:
<A NAME="RD26804ST-4A">4a</A>
Sano S.
Ikai K.
Kuroda H.
Nakamura T.
Obayashi A.
Ezure Y.
Enomoto H.
J. Antibiot.
1986,
39:
1674
<A NAME="RD26804ST-4B">4b</A>
Sano S.
Ikai K.
Katayama K.
Takesako K.
Nakamura T.
Obayashi A.
Ezure Y.
Enomoto H.
J. Antibiot.
1986,
39:
1685
<A NAME="RD26804ST-5">5</A> Eurypamides A-D:
Reddy MVR.
Harper MK.
Faulkner DJ.
Tetrahedron
1998,
54:
10649
Renieramide:
<A NAME="RD26804ST-6A">6a</A>
Ciasullo L.
Casapullo A.
Cutignano A.
Bifulco G.
Debitus C.
Hooper J.
Gomez-Paloma L.
Riccio R.
J. Nat. Prod.
2002,
65:
407
<A NAME="RD26804ST-6B">6b</A>
Itokawa H,
Watanabe K,
Kawaoto S, and
Inoue T. inventors; Jpn. Kokai Tokkyo Koho JP 63203671.
For leading references to the syntheses of K13, OF4949-I-IV and the eurypamides see:
<A NAME="RD26804ST-7A">7a</A>
Ito M.
Yamanaka M.
Kutsumura N.
Nishiyama S.
Tetrahedron
2004,
60:
5623
<A NAME="RD26804ST-7B">7b</A>
Jackson RFW.
Perez-Gonzalez M.
Chem. Commun.
2000,
2423
<A NAME="RD26804ST-7C">7c</A>
Bigot A.
Bois-Choussy M.
Zhu J.
Tetrahedron Lett.
2000,
41:
4573
<A NAME="RD26804ST-7D">7d</A>
Janetka JW.
Rich DH.
J. Am. Chem. Soc.
1997,
119:
6488
<A NAME="RD26804ST-7E">7e</A>
Pearson AJ.
Zhang PL.
Lee K.
J. Org. Chem.
1996,
61:
6581
<A NAME="RD26804ST-7F">7f</A>
Rao AVR.
Gurjar MK.
Reddy AB.
Khare VB.
Tetrahedron Lett.
1993,
34:
1657
<A NAME="RD26804ST-7G">7g</A>
Boger DL.
Yohannes D.
J. Org. Chem.
1990,
55:
6000
<A NAME="RD26804ST-7H">7h</A>
Evans DA.
Ellman JA.
J. Am. Chem. Soc.
1989,
111:
1063
<A NAME="RD26804ST-7I">7i</A>
Nishiyama S.
Suzuki Y.
Yamamura S.
Tetrahedron Lett.
1989,
30:
379
<A NAME="RD26804ST-7J">7j</A>
Schmidt U.
Weller D.
Holder A.
Lieberknecht A.
Tetrahedron Lett.
1988,
29:
3227
<A NAME="RD26804ST-8">8</A>
Lygo B.
Tetrahedron Lett.
1999,
40:
1389
<A NAME="RD26804ST-9A">9a</A>
Lygo B.
Allbutt B.
Synlett
2004,
326
<A NAME="RD26804ST-9B">9b</A>
Lygo B.
Allbutt B.
James SR.
Tetrahedron Lett.
2003,
44:
5629
<A NAME="RD26804ST-10">10</A>
The enantioselectivity of this alkylation was determined by chiral-phase HPLC comparison
of the product 10 with racemic material generated using n-Bu4NBr as the PTC. Use of catalyst 8 led to similar regioselectivity and yield, but gave 10 with only 50% ee.
<A NAME="RD26804ST-11">11</A>
Reinholtz E.
Becker A.
Hagenbruch B.
Schäfer S.
Schmitt A.
Synthesis
1990,
1069
<A NAME="RD26804ST-12A">12a</A>
Lygo B.
Andrews BI.
Slack D.
Tetrahedron Lett.
2003,
44:
9039
<A NAME="RD26804ST-12B">12b</A>
Lygo B.
Andrews BI.
Tetrahedron Lett.
2003,
44:
4499
<A NAME="RD26804ST-12C">12c</A>
Lygo B.
Humphreys LD.
Tetrahedron Lett.
2002,
43:
6677
<A NAME="RD26804ST-12D">12d</A>
Lygo B.
Andrews BI.
Crosby J.
Peterson JA.
Tetrahedron Lett.
2002,
43:
8015
<A NAME="RD26804ST-12E">12e</A>
Lygo B.
Crosby J.
Lowdon TR.
Wainwright PG.
Tetrahedron
2001,
57:
2391
<A NAME="RD26804ST-12F">12f</A>
Lygo B.
Crosby J.
Lowdon TR.
Peterson JA.
Wainwright PG.
Tetrahedron
2001,
57:
2403
<A NAME="RD26804ST-12G">12g</A>
Lygo B.
Crosby J.
Peterson JA.
Tetrahedron
2001,
57:
6447
<A NAME="RD26804ST-12H">12h</A>
Lygo B.
Wainwright PG.
Tetrahedron Lett.
1997,
38:
8595
<A NAME="RD26804ST-13">13</A> For application of a related alkylation to the synthesis of the dityrosine fragment
of RP66453 see:
Boisnard S.
Carbonnelle A.-C.
Zhu J.
Org. Lett.
2001,
3:
2061
<A NAME="RD26804ST-14">14</A>
Representative Alkylation-Hydrolysis Procedure (Preparation of 12): A solution of glycine imine 4a (161 mg, 0.54 mmol) in toluene (4 mL) was placed under a nitrogen atmosphere. Iodide
11 (312 mg, 0.45 mmol), catalyst 8 (36 mg 10 mol%) and 9 M aq KOH (400 µL) were added sequentially, and the resulting
mixture stirred at r.t. for 18 h. The toluene layer was then separated and the aqueous
layer extracted with EtOAc (3 × 2 mL). The combined organics were dried (MgSO4), and concentrated under reduced pressure. The residue was dissolved in Et2O (10 mL), filtered (to remove catalyst), and again concentrated under reduced pressure.
The residue was then dissolved in THF (5 mL) and 15% aq citric acid (1.5 mL) added.
The mixture was stirred at r.t. for 18 h, then extracted with CHCl3 (4 × 3 mL). The combined organics were washed with 10% aq Na2CO3 (2 × 4 mL), dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by chromatography
on silica gel (CHCl3-MeOH, 50:1) to yield the orthogonally protected isodityrosine 12 (269 mg, 85%) as a pale yellow oil. R
f = 0.3 (CHCl3-MeOH, 25:1). [α]D +1 (c 0.9, CHCl3). IR (film): νmax = 3376, 2977, 2632, 1714, 1505 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.34-7.23 (10 H, m, ArH), 7.13 (2 H, d, J = 8.0 Hz, ArH), 6.84 (1 H, s, CHPh2), 6.81 (2 H, d, J = 8.0 Hz, ArH), 6.76 (1 H, d, J = 8.0 Hz, ArH), 6.68 (1 H, d, J = 8.0 Hz, ArH), 6.65 (1 H, s, ArH), 4.97 (1 H, br d, J = 8.0 Hz, NH), 4.68-4.60 (1 H, m, CHN), 3.78 (3 H, s, OCH3), 3.64-3.56 (1 H, m, CHN), 3.04 (1 H, dd, J = 6.0, 14.0 Hz, CHCH
a
Hb), 2.99-2.95 (2 H, m, CHCHa
H
b
, CHCH
a
Hb), 2.82 (1 H, dd, J = 8.0, 14.0 Hz, CHCHa
H
b
), 1.44 [9 H, s, C(CH3)3], 1.40 [9 H, s, C(CH3)3]. 13C NMR (125 MHz, CDCl3): δ = 174.2 (C), 170.9 (C), 156.9 (C), 155.0 (C), 150.0 (C), 144.6 (C), 139.6 (C),
139.4 (C), 131.3 (C), 130.5 (CH), 128.6 (CH), 128.5 (CH), 128.2 (CH), 128.0 (CH),
127.5 (CH), 127.0 (CH), 125.7 (CH), 122.4 (CH), 116.9 (CH), 112.8 (CH), 81.3 (C),
80.0 (C), 78.0 (CH), 56.3 (CH), 56.0 (CH3), 54.5 (CH), 40.3 (CH2), 37.4 (CH2), 28.3 (CH3), 28.1 (CH3). MS (ES+): m/z (%) = 719 (28) [M + Na+], 697 (100) [M + H+], 641 (10) [M - t-Bu + H+], 296 (68). HRMS: m/z calcd for C41H49N2O8 [M + H]+: 697.3489. Found: 697.3528.
<A NAME="RD26804ST-15">15</A> For an alternative approach to orthogonally protected (S,S)-isodityrosines see:
Jorgensen KB.
Gautun OR.
Tetrahedron
1999,
55:
10527
<A NAME="RD26804ST-16">16</A>
Kiso Y.
Nakamura S.
Ito K.
Ukawa K.
Kitagawa K.
J. Chem. Soc., Chem. Commun.
1979,
971
<A NAME="RD26804ST-17">17</A>
Selected data for synthetic renieramide (2): Mp 185-195 °C (decomp). [α]D -32 (c 0.1, MeOH) (lit. [α]D -30 (c 0.1, MeOH).6 1H NMR (500 MHz, CD3OD): δ = 7.42 (1 H, dd, J = 2.0, 8.0 Hz, ArH), 7.20 (1 H, dd, J = 2.0, 8.0 Hz, ArH), 7.01 (1 H, dd, J = 2.0, 8.0 Hz, ArH), 6.86 (1 H, dd, J = 2.5, 8.0 Hz, ArH), 6.81 (1 H, d, J = 8.0 Hz, ArH), 6.65 (1 H, dd, J = 2.0, 8.0 Hz, ArH), 5.98 (1 H, d, J = 2.0 Hz, ArH), 4.52 (1 H, dd, J = 3.5, 11.5 Hz, CHN), 4.48 (1 H, dd, J = 3.5, 12.5 Hz, CHN), 3.97 (1 H, dd, J = 2.0, 6.0 Hz, CHN), 3.38 (1 H, dd, J = 3.5, 13.0 Hz, CHCH
a
Hb), 3.15 (1 H, dd, J = 2.0, 15.0 Hz, CHCH
a
Hb), 2.91 (1 H, dd, J = 6.0, 15.0 Hz, CHCHa
H
b
), 2.60 (1 H, app. t, J = 12.5 Hz, CHCHa
H
b
) 1.70-1.62 [2 H, m, CH
2
CH(CH3)2], 1.61-1.51 [1 H, m, CH2CH(CH3)2], 0.95 (3 H, d, J = 6.0 Hz, CH3), 0.93 (3 H, d, J = 6.0 Hz, CH3). 13C NMR (125 MHz, CD3OD): δ = 178.1 (C), 172.7 (C), 169.1 (C), 154.6 (C), 149.8 (C), 147.2 (C), 137.1 (C),
133.0 (CH), 131.7 (CH), 125.0 (2 × CH), 123.1 (CH), 122.7 (CH), 117.2 (CH), 116.9
(CH), 58.1 (CH), 53.7 (CH), 52.1 (CH), 43.6 (CH2), 40.9 (CH2), 37.4 (CH2), 26.0 (CH), 23.8 (CH3), 21.6 (CH3).
<A NAME="RD26804ST-18">18</A>
There is a typographical error in the 13C NMR (CD3OD) reported for natural renieramide,6 the CH2 carbon of the l-DOPA fragment occurs at δ = 37.7 ppm (not 43.6). We thank Prof. R. Riccio and Dr.
A. Casapullo for kindly providing this information.