Semin Vasc Med 2004; 4(2): 173-186
DOI: 10.1055/s-2004-835376
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001 USA.

Drink to Prevent: Review on the Cardioprotective Mechanisms of Alcohol and Red Wine Polyphenols

Dylan W. de Lange1 , Albert van de Wiel2
  • 1Department of Internal Medicine, University Medical Center, Heidelberglaan, Utrecht, The Netherlands
  • 2Department of Internal Medicine, Meander Medical Center, Utrechtseweg 160, Amersfoort, The Netherlands
Further Information

Publication History

Publication Date:
11 October 2004 (online)

Moderate alcohol consumption has convincingly been associated with decreased cardiovascular mortality in epidemiological studies and metaanalyses. This decreased mortality has been attributed to changes in lipid profiles, decreased coagulation, increased fibrinolysis, inhibition of platelets, increased nitric oxide, and antioxidant capacities of alcoholic beverages. Most of these laboratory and animal studies, as well as small intervention trials in human volunteers, have revealed many interesting mechanisms that contribute to the cardioprotective effects of alcohol, red wine, or red wine polyphenolic compounds. An update on putative mechanisms is presented in this review.

REFERENCES

  • 1 Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease.  Lancet. 1992;  339(8808) 1523-1526
  • 2 Gaziano J M, Gaziano T A, Glynn R J et al.. Light-to-moderate alcohol consumption and mortality in the Physicians' Health Study enrollment cohort.  J Am Coll Cardiol. 2000;  35(1) 96-105
  • 3 Rimm E B, Klatsky A, Grobbee D, Stampfer M J. Review of moderate alcohol consumption and reduced risk of coronary heart disease: is the effect due to beer, wine, or spirits.  BMJ. 1996;  312(7033) 731-736
  • 4 Marmot M G. Alcohol and coronary heart disease.  Int J Epidemiol. 2001;  30(4) 724-729
  • 5 Doll R, Peto R, Hall E, Wheatley K, Gray R. Mortality in relation to consumption of alcohol: 13 years' observations on male British doctors.  BMJ. 1994;  309(6959) 911-918
  • 6 Di Castelnuovo A, Rotondo S, Iacoviello L, Donati M B, de Gaetano G. Meta-analysis of wine and beer consumption in relation to vascular risk.  Circulation. 2002;  105(24) 2836-2844
  • 7 Boffetta P, Garfinkel L. Alcohol drinking and mortality among men enrolled in an American Cancer Society prospective study.  Epidemiology. 1990;  1(5) 342-348
  • 8 Stampfer M J, Colditz G A, Willett W C, Speizer F E, Hennekens C H. A prospective study of moderate alcohol consumption and the risk of coronary disease and stroke in women.  N Engl J Med. 1988;  319(5) 267-273
  • 9 Gronbaek M, Sorensen T I. Alcohol consumption and risk of coronary heart disease. Studies suggest that wine has additional effect to that of ethanol.  BMJ. 1996;  313(7053) 365
  • 10 Gronbaek M, Deis A, Sorensen T I, Becker U, Schnohr P, Jensen G. Mortality associated with moderate intakes of wine, beer, or spirits.  BMJ. 1995;  310(6988) 1165-1169
  • 11 Jackson R, Scragg R, Beaglehole R. Alcohol consumption and risk of coronary heart disease.  BMJ. 1991;  303(6796) 211-216
  • 12 Klatsky A L, Armstrong M A, Friedman G D. Risk of cardiovascular mortality in alcohol drinkers, ex-drinkers and nondrinkers.  Am J Cardiol. 1990;  66(17) 1237-1242
  • 13 Gordon T, Kannel W B. Drinking habits and cardiovascular disease: the Framingham Study.  Am Heart J. 1983;  105(4) 667-673
  • 14 Rimm E B, Williams P, Fosher K, Criqui M, Stampfer M J. Moderate alcohol intake and lower risk of coronary heart disease: meta- analysis of effects on lipids and haemostatic factors.  BMJ. 1999;  319(7224) 1523-1528
  • 15 Nestle M. Wine and coronary heart disease.  Lancet. 1992;  340(8814) 314-315
  • 16 Law M, Wald N. Why heart disease mortality is low in France: the time lag explanation.  BMJ. 1999;  318(7196) 1471-1476
  • 17 Gronbaek M, Becker U, Johansen D et al.. Type of alcohol consumed and mortality from all causes, coronary heart disease, and cancer.  Ann Intern Med. 2000;  133(6) 411-419
  • 18 Mortensen E L, Jensen H H, Sanders S A, Reinisch J M. Better psychological functioning and higher social status may largely explain the apparent health benefits of wine: a study of wine and beer drinking in young Danish adults.  Arch Intern Med. 2001;  161(15) 1844-1848
  • 19 St Leger A S, Cochrane A L, Moore F. Factors associated with cardiac mortality in developed countries with particular reference to the consumption of wine.  Lancet. 1979;  1(8124) 1017-1020
  • 20 Soleas G J, Diamandis E P, Goldberg D M. Wine as a biological fluid: history, production, and role in disease prevention.  J Clin Lab Anal. 1997;  11(5) 287-313
  • 21 Pendurthi U R, Williams J T, Rao L V. Resveratrol, a polyphenolic compound found in wine, inhibits tissue factor expression in vascular cells: a possible mechanism for the cardiovascular benefits associated with moderate consumption of wine.  Arterioscler Thromb Vasc Biol. 1999;  19(2) 419-426
  • 22 Grenett H E, Aikens M L, Torres J A et al.. Ethanol transcriptionally upregulates t-PA and u-PA gene expression in cultured human endothelial cells.  Alcohol Clin Exp Res. 1998;  22(4) 849-853
  • 23 Tabengwa E M, Abou-Agag L H, Benza R L, Torres J A, Aikens M L, Booyse F M. Ethanol-induced up-regulation of candidate plasminogen receptor annexin II in cultured human endothelial cells.  Alcohol Clin Exp Res. 2000;  24(6) 754-761
  • 24 Tabengwa E M, Grenett H E, Benza R L et al.. Ethanol-induced up-regulation of the urokinase receptor in cultured human endothelial cells.  Alcohol Clin Exp Res. 2001;  25(2) 163-170
  • 25 Tsai S H, Lin-Shiau S Y, Lin J K. Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol.  Br J Pharmacol. 1999;  126(3) 673-680
  • 26 Wadsworth T L, Koop D R. Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages.  Biochem Pharmacol. 1999;  57(8) 941-949
  • 27 Lin Y L, Lin J K. (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB.  Mol Pharmacol. 1997;  52(3) 465-472
  • 28 Goldberg D M, Yan J, Soleas G J. Absorption of three wine-related polyphenols in three different matrices by healthy subjects.  Clin Biochem. 2003;  36(1) 79-87
  • 29 de Vries J H, Hollman P C, van A I, Olthof M R, Katan M B. Red wine is a poor source of bioavailable flavonols in men.  J Nutr. 2001;  131(3) 745-748
  • 30 Manach C, Morand C, Texier O et al.. Quercetin metabolites in plasma of rats fed diets containing rutin or quercetin.  J Nutr. 1995;  125(7) 1911-1922
  • 31 Manach C, Texier O, Morand C et al.. Comparison of the bioavailability of quercetin and catechin in rats.  Free Radic Biol Med. 1999;  27(11-12) 1259-1266
  • 32 Donovan J L, Bell J R, Kasim-Karakas S et al.. Catechin is present as metabolites in human plasma after consumption of red wine.  J Nutr. 1999;  129(9) 1662-1668
  • 33 Warden B A, Smith L S, Beecher G R, Balentine D A, Clevidence B A. Catechins are bioavailable in men and women drinking black tea throughout the day.  J Nutr. 2001;  131(6) 1731-1737
  • 34 Chen L, Lee M J, Li H, Yang C S. Absorption, distribution, elimination of tea polyphenols in rats.  Drug Metab Dispos. 1997;  25(9) 1045-1050
  • 35 Morand C, Crespy V, Manach C, Besson C, Demigne C, Remesy C. Plasma metabolites of quercetin and their antioxidant properties.  Am J Physiol. 1998;  275(1 Pt 2) R212-R219
  • 36 Bourne L C, Rice-Evans C. Bioavailability of ferulic acid.  Biochem Biophys Res Commun. 1998;  253(2) 222-227
  • 37 Scalbert A, Morand C, Manach C, Remesy C. Absorption and metabolism of polyphenols in the gut and impact on health.  Biomed Pharmacother. 2002;  56(6) 276-282
  • 38 Simonetti P, Gardana C, Pietta P. Plasma levels of caffeic acid and antioxidant status after red wine intake.  J Agric Food Chem. 2001;  49(12) 5964-5968
  • 39 Caccetta R A, Croft K D, Beilin L J, Puddey I B. Ingestion of red wine significantly increases plasma phenolic acid concentrations but does not acutely affect ex vivo lipoprotein oxidizability.  Am J Clin Nutr. 2000;  71(1) 67-74
  • 40 Manach C, Morand C, Crespy V et al.. Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties.  FEBS Lett. 1998;  426(3) 331-336
  • 41 Booyse F M, Parks D A. Moderate wine and alcohol consumption: beneficial effects on cardiovascular disease.  Thromb Haemost. 2001;  86(2) 517-528
  • 42 Luc G, Bard J M, Ferrieres J et al.. Value of HDL cholesterol, apolipoprotein A-I, lipoprotein A-I, and lipoprotein A-I/A-II in prediction of coronary heart disease: the PRIME Study. Prospective Epidemiological Study of Myocardial Infarction.  Arterioscler Thromb Vasc Biol. 2002;  22(7) 1155-1161
  • 43 Valimaki M, Laitinen K, Ylikahri R et al.. The effect of moderate alcohol intake on serum apolipoprotein A-I- containing lipoproteins and lipoprotein (a).  Metabolism. 1991;  40(11) 1168-1172
  • 44 Taskinen M R, Valimaki M, Nikkila E A, Kuusi T, Ylikahri R. Sequence of alcohol-induced initial changes in plasma lipoproteins (VLDL and HDL) and lipolytic enzymes in humans.  Metabolism. 1985;  34(2) 112-119
  • 45 Gaziano J M, Buring J E, Breslow J L et al.. Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction.  N Engl J Med. 1993;  329(25) 1829-1834
  • 46 Chung B H, Doran S, Liang P et al.. Alcohol-mediated enhancement of postprandial lipemia: a contributing factor to an increase in plasma HDL and a decrease in risk of cardiovascular disease.  Am J Clin Nutr. 2003;  78(3) 391-399
  • 47 Sillanaukee P, Koivula T, Jokela H, Pitkajarvi T, Seppa K. Alcohol consumption and its relation to lipid-based cardiovascular risk factors among middle-aged women: the role of HDL(3) cholesterol.  Atherosclerosis. 2000;  152(2) 503-510
  • 48 De Oliveira E, Silva E R, Foster D, McGee H M, Seidman C E, Smith J D, Breslow J L et al.. Alcohol consumption raises HDL cholesterol levels by increasing the transport rate of apolipoproteins A-I and A-II.  Circulation. 2000;  102(19) 2347-2352
  • 49 Sierksma A, van der Gaag M S, van Tol A, James R W, Hendriks H F. Kinetics of HDL cholesterol and paraoxonase activity in moderate alcohol consumers.  Alcohol Clin Exp Res. 2002;  26(9) 1430-1435
  • 50 Lin R C, Lumeng L, Phelps V L. Serum high-density lipoprotein particles of alcohol-fed rats are deficient in apolipoprotein E.  Hepatology. 1989;  9(2) 307-313
  • 51 Merritt R, Guruge B L, Miller D D, Chaitman B R, Bora P S. Moderate alcohol feeding attenuates postinjury vascular cell proliferation in rabbit angioplasty model.  J Cardiovasc Pharmacol. 1997;  30(1) 19-25
  • 52 Langer R D, Criqui M H, Reed D M. Lipoproteins and blood pressure as biological pathways for effect of moderate alcohol consumption on coronary heart disease.  Circulation. 1992;  85(3) 910-915
  • 53 Daher C F, Berberi R N, Baroody G M. Effect of acute and chronic moderate alcohol consumption on fasted and postprandial lipemia in the rat.  Food Chem Toxicol. 2003;  41(11) 1551-1559
  • 54 van der Gaag M S, Sierksma A, Schaafsma G et al.. Moderate alcohol consumption and changes in postprandial lipoproteins of premenopausal and postmenopausal women: a diet-controlled, randomized intervention study.  J Womens Health Gend Based Med. 2000;  9(6) 607-616
  • 55 Rakic V, Puddey I B, Dimmitt S B, Burke V, Beilin L J. A controlled trial of the effects of pattern of alcohol intake on serum lipid levels in regular drinkers.  Atherosclerosis. 1998;  137(2) 243-252
  • 56 Lavy A, Fuhrman B, Markel A et al.. Effect of dietary supplementation of red or white wine on human blood chemistry, hematology and coagulation: favorable effect of red wine on plasma high-density lipoprotein.  Ann Nutr Metab. 1994;  38(5) 287-294
  • 57 Pace-Asciak C R, Rounova O, Hahn S E, Diamandis E P, Goldberg D M. Wines and grape juices as modulators of platelet aggregation in healthy human subjects.  Clin Chim Acta. 1996;  246(1-2) 163-182
  • 58 Goldberg D M, Garovic-Kocic V, Diamandis E P, Pace-Asciak C R. Wine: does the colour count?.  Clin Chim Acta. 1996;  246(1-2) 183-193
  • 59 Alberti-Fidanza A, Burini G, Antonelli G, Murdolo G, Perriello G. Acute effects of lyophilised red wine on total antioxidant capacity in healthy volunteers.  Diabetes Nutr Metab. 2003;  16(1) 65-71
  • 60 Kondo K, Matsumoto A, Kurata H et al.. Inhibition of oxidation of low-density lipoprotein with red wine.  Lancet. 1994;  344(8930) 1152
  • 61 Stein J H, Keevil J G, Wiebe D A, Aeschlimann S, Folts J D. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease.  Circulation. 1999;  100(10) 1050-1055
  • 62 van Golde P H, Sloots L M, Vermeulen W P et al.. The role of alcohol in the anti low density lipoprotein oxidation activity of red wine.  Atherosclerosis. 1999;  147(2) 365-370
  • 63 Rifici V A, Stephan E M, Schneider S H, Khachadurian A K. Red wine inhibits the cell-mediated oxidation of LDL and HDL.  J Am Coll Nutr. 1999;  18(2) 137-143
  • 64 Frankel E N, Waterhouse A L, Kinsella J E. Inhibition of human LDL oxidation by resveratrol.  Lancet. 1993;  341(8852) 1103-1104
  • 65 Chopra M, Fitzsimons P E, Strain J J, Thurnham D I, Howard A N. Nonalcoholic red wine extract and quercetin inhibit LDL oxidation without affecting plasma antioxidant vitamin and carotenoid concentrations.  Clin Chem. 2000;  46(8 Pt 1) 1162-1170
  • 66 Hayek T, Fuhrman B, Vaya J et al.. Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation.  Arterioscler Thromb Vasc Biol. 1997;  17(11) 2744-2752
  • 67 Tribouilloy C, Peltier M, Colas L et al.. Fibrinogen is an independent marker for thoracic aortic atherosclerosis.  Am J Cardiol. 1998;  81(3) 321-326
  • 68 Ernst E, Resch K L. Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature.  Ann Intern Med. 1993;  118(12) 956-963
  • 69 Dimmitt S B, Rakic V, Puddey I B et al.. The effects of alcohol on coagulation and fibrinolytic factors: a controlled trial.  Blood Coagul Fibrinolysis. 1998;  9(1) 39-45
  • 70 Pitsavos C, Skoumas J, Dernellis J et al.. Influence of biological factors on lipid and fibrinogen measurements in young men. An epidemiological study in 2009 recruits.  Eur Heart J. 1998;  19(11) 1642-1647
  • 71 Scarabin P Y, Aillaud M F, Amouyel P et al.. Associations of fibrinogen, factor VII and PAI-1 with baseline findings among 10,500 male participants in a prospective study of myocardial infarction-the PRIME Study. Prospective Epidemiological Study of Myocardial Infarction.  Thromb Haemost. 1998;  80(5) 749-756
  • 72 Margaglione M, Cappucci G, Colaizzo D et al.. Fibrinogen plasma levels in an apparently healthy general population-relation to environmental and genetic determinants.  Thromb Haemost. 1998;  80(5) 805-810
  • 73 Mennen L I, Balkau B, Vol S, Caces E, Eschwege E. Fibrinogen: a possible link between alcohol consumption and cardiovascular disease? DESIR Study Group.  Arterioscler Thromb Vasc Biol. 1999;  19(4) 887-892
  • 74 Deaciuc I V. Alcohol and cytokine networks.  Alcohol. 1997;  14(5) 421-430
  • 75 Gorinstein S, Zemser M, Lichman I et al.. Moderate beer consumption and the blood coagulation in patients with coronary artery disease.  J Intern Med. 1997;  241(1) 47-51
  • 76 Pellegrini N, Pareti F I, Stabile F, Brusamolino A, Simonetti P. Effects of moderate consumption of red wine on platelet aggregation and haemostatic variables in healthy volunteers.  Eur J Clin Nutr. 1996;  50(4) 209-213
  • 77 El Sayed M, Omar A, Lin X. Post-exercise alcohol ingestion perturbs blood haemostasis during recovery.  Thromb Res. 2000;  99(6) 523-530
  • 78 El Sayed M S, Nieuwenhuizen W. The effect of alcohol ingestion on the exercise-induced changes in fibrin and fibrinogen degradation products in man.  Blood Coagul Fibrinolysis. 2000;  11(4) 359-365
  • 79 van Golde P M, Kraaijenhagen R J, Bouma B N, van de Wiel A. No acute effect of red wine on the coagulation pathway in healthy men.  Alcohol. 2003;  29(3) 183-186
  • 80 Pikaar N A, Wedel M, van der Beek E J et al.. Effects of moderate alcohol consumption on platelet aggregation, fibrinolysis, and blood lipids.  Metabolism. 1987;  36(6) 538-543
  • 81 Ceriello A, Bortolotti N, Motz E et al.. Red wine protects diabetic patients from meal-induced oxidative stress and thrombosis activation: a pleasant approach to the prevention of cardiovascular disease in diabetes.  Eur J Clin Invest. 2001;  31(4) 322-328
  • 82 Di Santo A, Mezzetti A, Napoleone E et al.. Resveratrol and quercetin down-regulate tissue factor expression by human stimulated vascular cells.  J Thromb Haemost. 2003;  1(5) 1089-1095
  • 83 Taubman M B, Fallon J T, Schecter A D et al.. Tissue factor in the pathogenesis of atherosclerosis.  Thromb Haemost. 1997;  78(1) 200-204
  • 84 Semeraro N, Colucci M. Tissue factor in health and disease.  Thromb Haemost. 1997;  78(1) 759-764
  • 85 Hendriks H F, Veenstra J, Velthuis-te Wierik E J, Schaafsma G, Kluft C. Effect of moderate dose of alcohol with evening meal on fibrinolytic factors.  BMJ. 1994;  308(6935) 1003-1006
  • 86 Sumi H, Hamada H, Tsushima H, Mihara H. Urokinase-like plasminogen activator increased in plasma after alcohol drinking.  Alcohol Alcohol. 1988;  23(1) 33-43
  • 87 Djousse L, Pankow J S, Arnett D K et al.. Alcohol consumption and plasminogen activator inhibitor type 1: the National Heart, Lung, and Blood Institute Family Heart Study.  Am Heart J. 2000;  139(4) 704-709
  • 88 Laug W E. Ethyl alcohol enhances plasminogen activator secretion by endothelial cells.  JAMA. 1983;  250(6) 772-776
  • 89 Aikens M L, Grenett H E, Benza R L, Tabengwa E M, Davis G C, Booyse F M. Alcohol-induced upregulation of plasminogen activators and fibrinolytic activity in cultured human endothelial cells.  Alcohol Clin Exp Res. 1998;  22(2) 375-381
  • 90 Aikens M L, Benza R L, Grenett H E et al.. Ethanol increases surface-localized fibrinolytic activity in cultured endothelial cells.  Alcohol Clin Exp Res. 1997;  21(8) 1471-1478
  • 91 Grenett H E, Aikens M L, Tabengwa E M, Davis G C, Booyse F M. Ethanol downregulates transcription of the PAI-1 gene in cultured human endothelial cells.  Thromb Res. 2000;  97(4) 247-255
  • 92 Grenett H E, Wolkowicz P E, Benza R L, Tresnak J K, Wheeler C G, Booyse F M. Identification of a 251-bp fragment of the PAI-1 gene promoter that mediates the ethanol-induced suppression of PAI-1 expression.  Alcohol Clin Exp Res. 2001;  25(5) 629-636
  • 93 Abou-Agag L H, Tabengwa E M, Tresnak J A, Wheeler C G, Taylor K B, Booyse F M. Ethanol-induced increased surface-localized fibrinolytic activity in cultured human endothelial cells: kinetic analysis.  Alcohol Clin Exp Res. 2001;  25(3) 351-361
  • 94 Stemmermann G N, Hayashi T, Resch J A, Chung C S, Reed D M, Rhoads G G. Risk factors related to ischemic and hemorrhagic cerebrovascular disease at autopsy: the Honolulu Heart Study.  Stroke. 1984;  15(1) 23-28
  • 95 Donahue R P, Abbott R D, Reed D M, Yano K. Alcohol and hemorrhagic stroke. The Honolulu Heart Program.  JAMA. 1986;  255(17) 2311-2314
  • 96 van de Wiel A, van Golde P M, Kraaijenhagen R J, dem Borne P A, Bouma B N, Hart H C. Acute inhibitory effect of alcohol on fibrinolysis.  Eur J Clin Invest. 2001;  31(2) 164-170
  • 97 van Golde P M, Hart H C, Kraaijenhagen R J, Bouma B N, van de Wiel A. Regular alcohol intake and fibrinolysis.  Neth J Med. 2002;  60(7) 285-288
  • 98 Abou-Agag L H, Aikens M L, Tabengwa E M et al.. Polyphyenolics increase t-PA and u-PA gene transcription in cultured human endothelial cells.  Alcohol Clin Exp Res. 2001;  25(2) 155-162
  • 99 Rubin R, Rand M L. Alcohol and platelet function.  Alcohol Clin Exp Res. 1994;  18(1) 105-110
  • 100 Rubin R. Effect of ethanol on platelet function.  Alcohol Clin Exp Res. 1999;  23(6) 1114-1118
  • 101 Serebruany V L, Lowry D R, Fuzailov S Y, Levine D J, O'Connor C M, Gurbel P A. Moderate alcohol consumption is associated with decreased platelet activity in patients presenting with acute myocardial infarction.  J Thromb Thrombolysis. 2000;  9(3) 229-234
  • 102 Desai K, Owen J S, Wilson D T, Hutton R A. Platelet aggregation and plasma lipoproteins in alcoholics during alcohol withdrawal.  Thromb Haemost. 1986;  55(2) 173-177
  • 103 Ruf J C, Berger J L, Renaud S. Platelet rebound effect of alcohol withdrawal and wine drinking in rats. Relation to tannins and lipid peroxidation.  Arterioscler Thromb Vasc Biol. 1995;  15(1) 140-144
  • 104 Hillbom M E. What supports the role of alcohol as a risk factor for stroke?.  Acta Med Scand Suppl. 1987;  717 93-106
  • 105 Renaud S C, Ruf J C. Effects of alcohol on platelet functions.  Clin Chim Acta. 1996;  246(1-2) 77-89
  • 106 Rand M L, Groves H M, Packham M A, Mustard J F, Kinlough-Rathbone R L. Acute administration of ethanol to rabbits inhibits thrombus formation induced by indwelling aortic catheters.  Lab Invest. 1990;  63(6) 742-745
  • 107 Demrow H S, Slane P R, Folts J D. Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries.  Circulation. 1995;  91(4) 1182-1188
  • 108 McGregor L, Renaud S. Inhibitory effect of alcohol on platelet functions of rats fed saturated fats.  Thromb Res. 1981;  22(1-2) 221-225
  • 109 Benistant C, Rubin R. Ethanol inhibits thrombin-induced secretion by human platelets at a site distinct from phospholipase C or protein kinase C.  Biochem J. 1990;  269(2) 489-497
  • 110 Rubin R. Ethanol interferes with collagen-induced platelet activation by inhibition of arachidonic acid mobilization.  Arch Biochem Biophys. 1989;  270(1) 99-113
  • 111 Rand M L, Packham M A, Kinlough-Rathbone R L, Fraser M J. Effects of ethanol on pathways of platelet aggregation in vitro.  Thromb Haemost. 1988;  59(3) 383-387
  • 112 Wang Z, Huang Y, Zou J, Cao K, Xu Y, Wu J M. Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro.  Int J Mol Med. 2002;  9(1) 77-79
  • 113 Miceli M, Alberti L, Bennardini F et al.. Effect of low doses of ethanol on platelet function in long-life abstainers and moderate-wine drinkers.  Life Sci. 2003;  73(12) 1557-1566
  • 114 Numminen H, Kobayashi M, Uchiyama S et al.. Effects of alcohol and the evening meal on shear-induced platelet aggregation and urinary excretion of prostanoids.  Alcohol Alcohol. 2000;  35(6) 594-600
  • 115 de Lange D W, van Golde P H, Scholman W LG, Kraaijenhagen R J, Akkerman J WN, van de Wiel A. Red wine and red wine polyphenolic compounds but not alcohol inhibit ADP-induced platelet aggregation.  Eur J Intern Med. 2003;  14 361-366
  • 116 Rand M L, Vickers J D, Kinlough-Rathbone R L, Packham M A, Mustard J F. Thrombin-induced inositol trisphosphate production by rabbit platelets is inhibited by ethanol.  Biochem J. 1988;  251(1) 279-284
  • 117 Rand M L, Gross P L, Jakowec D M, Packham M A, Mustard J F. In vitro effects of ethanol on rabbit platelet aggregation, secretion of granule contents, and cyclic AMP levels in the presence of prostacyclin.  Thromb Haemost. 1989;  61(2) 254-258
  • 118 Stubbs C D, Rubin R. Effect of ethanol on platelet phospholipase A2.  Lipids. 1992;  27(4) 255-260
  • 119 Renaud S, Dumont E, Godsey F, Suplisson A, Thevenon C. Platelet functions in relation to dietary fats in farmers from two regions of France.  Thromb Haemost. 1979;  40(3) 518-531
  • 120 Russo P, Tedesco I, Russo M, Russo G L, Venezia A, Cicala C. Effects of dealcoholated red wine and its phenolic fractions on platelet aggregation.  Nutr Metab Cardiovasc Dis. 2001;  11(1) 25-29
  • 121 Corvazier E, Maclouf J. Interference of some flavonoids and non-steroidal anti-inflammatory drugs with oxidative metabolism of arachidonic acid by human platelets and neutrophils.  Biochim Biophys Acta. 1985;  835(2) 315-321
  • 122 Pignatelli P, Pulcinelli F M, Celestini A et al.. The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide.  Am J Clin Nutr. 2000;  72(5) 1150-1155
  • 123 Pace-Asciak C R, Hahn S, Diamandis E P, Soleas G, Goldberg D M. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease.  Clin Chim Acta. 1995;  235(2) 207-219
  • 124 Jang M, Cai L, Udeani G O et al.. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes.  Science. 1997;  275(5297) 218-220
  • 125 Beretz A, Stierle A, Anton R, Cazenave J P. Role of cyclic AMP in the inhibition of human platelet aggregation by quercetin, a flavonoid that potentiates the effect of prostacyclin.  Biochem Pharmacol. 1982;  31(22) 3597-3600
  • 126 Landolfi R, Mower R L, Steiner M. Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Structure-activity relations.  Biochem Pharmacol. 1984;  33(9) 1525-1530
  • 127 Mower R L, Landolfi R, Steiner M. Inhibition in vitro of platelet aggregation and arachidonic acid metabolism by flavone.  Biochem Pharmacol. 1984;  33(3) 357-363
  • 128 Kojda G, Kottenberg K. Regulation of basal myocardial function by NO.  Cardiovasc Res. 1999;  41(3) 514-523
  • 129 Loke K E, McConnell P I, Tuzman J M et al.. Endogenous endothelial nitric oxide synthase-derived nitric oxide is a physiological regulator of myocardial oxygen consumption.  Circ Res. 1999;  84(7) 840-845
  • 130 Kanno S, Lee P C, Zhang Y et al.. Attenuation of myocardial ischemia/reperfusion injury by superinduction of inducible nitric oxide synthase.  Circulation. 2000;  101(23) 2742-2748
  • 131 Sumeray M S, Rees D D, Yellon D M. Infarct size and nitric oxide synthase in murine myocardium.  J Mol Cell Cardiol. 2000;  32(1) 35-42
  • 132 Radomski M W, Moncada S. Regulation of vascular homeostasis by nitric oxide.  Thromb Haemost. 1993;  70(1) 36-41
  • 133 Baker C S, Rimoldi O, Camici P G et al.. Repetitive myocardial stunning in pigs is associated with the increased expression of inducible and constitutive nitric oxide synthases.  Cardiovasc Res. 1999;  43(3) 685-697
  • 134 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s.  Nature. 1993;  362(6423) 801-809
  • 135 Gaballa M A, Goldman S. Overexpression of endothelium nitric oxide synthase reverses the diminished vasorelaxation in the hindlimb vasculature in ischemic heart failure in vivo.  J Mol Cell Cardiol. 1999;  31(6) 1243-1252
  • 136 Beckman J S, Koppenol W H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly.  Am J Physiol. 1996;  271(5 Pt 1) C1424-C1437
  • 137 Channon K M, Blazing M A, Shetty G A, Potts K E, George S E. Adenoviral gene transfer of nitric oxide synthase: high level expression in human vascular cells.  Cardiovasc Res. 1996;  32(5) 962-972
  • 138 Binsack R, Boersma B J, Patel R P et al.. Enhanced antioxidant activity after chlorination of quercetin by hypochlorous acid.  Alcohol Clin Exp Res. 2001;  25(3) 434-443
  • 139 Parks D A, Booyse F M. Cardiovascular protection by alcohol and polyphenols: role of nitric oxide.  Ann N Y Acad Sci. 2002;  957 115-121
  • 140 Durante W, Cheng K, Sunahara R K, Schafer A I. Ethanol potentiates interleukin-1 beta-stimulated inducible nitric oxide synthase expression in cultured vascular smooth muscle cells.  Biochem J. 1995;  308(Pt 1) 231-236
  • 141 Venkov C D, Myers P R, Tanner M A, Su M, Vaughan D E. Ethanol increases endothelial nitric oxide production through modulation of nitric oxide synthase expression.  Thromb Haemost. 1999;  81(4) 638-642
  • 142 Sun H, Patel K P, Mayhan W G. Impairment of neuronal nitric oxide synthase-dependent dilation of cerebral arterioles during chronic alcohol consumption.  Alcohol Clin Exp Res. 2002;  26(5) 663-670
  • 143 Sun H, Mayhan W G. Temporal effect of alcohol consumption on reactivity of pial arterioles: role of oxygen radicals.  Am J Physiol Heart Circ Physiol. 2001;  280(3) H992-H1001
  • 144 Sun H, Mayhan W G. Superoxide dismutase ameliorates impaired nitric oxide synthase-dependent dilatation of the basilar artery during chronic alcohol consumption.  Brain Res. 2001;  891(1-2) 116-122
  • 145 Sun H, Patel K P, Mayhan W G. Tetrahydrobiopterin, a cofactor for NOS, improves endothelial dysfunction during chronic alcohol consumption.  Am J Physiol Heart Circ Physiol. 2001;  281(5) H1863-H1869
  • 146 Sierksma A, van der Gaag M S, Grobbee D E, Hendriks H F. Acute and chronic effects of dinner with alcoholic beverages on nitric oxide metabolites in healthy men.  Clin Exp Pharmacol Physiol. 2003;  30(7) 504-506
  • 147 Zou J G, Wang Z R, Huang Y Z, Cao K J, Wu J M. Effect of red wine and wine polyphenol resveratrol on endothelial function in hypercholesterolemic rabbits.  Int J Mol Med. 2003;  11(3) 317-320
  • 148 Fu W, Conklin B S, Lin P H, Lumsden A B, Yao Q, Chen C. Red wine prevents homocysteine-induced endothelial dysfunction in porcine coronary arteries.  J Surg Res. 2003;  115(1) 82-91
  • 149 Ndiaye M, Chataigneau T, Andriantsitohaina R, Stoclet J C, Schini-Kerth V B. Red wine polyphenols cause endothelium-dependent EDHF-mediated relaxations in porcine coronary arteries via a redox-sensitive mechanism.  Biochem Biophys Res Commun. 2003;  310(2) 371-377
  • 150 Wallerath T, Poleo D, Li H, Forstermann U. Red wine increases the expression of human endothelial nitric oxide synthase: a mechanism that may contribute to its beneficial cardiovascular effects.  J Am Coll Cardiol. 2003;  41(3) 471-478
  • 151 Stoclet J C, Kleschyov A, Andriambeloson E, Diebolt M, Andriantsitohaina R. Endothelial no release caused by red wine polyphenols.  J Physiol Pharmacol. 1999;  50(4) 535-540
  • 152 Andriambeloson E, Magnier C, Haan-Archipoff G et al.. Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta.  J Nutr. 1998;  128(12) 2324-2333
  • 153 Chen C K, Pace-Asciak C R. Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta.  Gen Pharmacol. 1996;  27(2) 363-366
  • 154 Zenebe W, Pechanova O, Andriantsitohaina R. Red wine polyphenols induce vasorelaxation by increased nitric oxide bioactivity.  Physiol Res. 2003;  52(4) 425-432
  • 155 Andriambeloson E, Stoclet J C, Andriantsitohaina R. Mechanism of endothelial nitric oxide-dependent vasorelaxation induced by wine polyphenols in rat thoracic aorta.  J Cardiovasc Pharmacol. 1999;  33(2) 248-254
  • 156 Martin S, Andriambeloson E, Takeda K, Andriantsitohaina R. Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production.  Br J Pharmacol. 2002;  135(6) 1579-1587
  • 157 Leikert J F, Rathel T R, Wohlfart P, Cheynier V, Vollmar A M, Dirsch V M. Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells.  Circulation. 2002;  106(13) 1614-1617
  • 158 Hollenberg N K. Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells.  Curr Hypertens Rep. 2003;  5(4) 287-288
  • 159 Wallerath T, Deckert G, Ternes T et al.. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase.  Circulation. 2002;  106(13) 1652-1658
  • 160 Dreosti I E. Antioxidant polyphenols in tea, cocoa, and wine.  Nutrition. 2000;  16(7-8) 692-694
  • 161 Pannala A S, Rice-Evans C A, Halliwell B, Singh S. Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols.  Biochem Biophys Res Commun. 1997;  232(1) 164-168
  • 162 da Silva E L, Piskula M K, Yamamoto N, Moon J H, Terao J. Quercetin metabolites inhibit copper ion-induced lipid peroxidation in rat plasma.  FEBS Lett. 1998;  430(3) 405-408
  • 163 Boersma B J, Patel R P, Kirk M et al.. Chlorination and nitration of soy isoflavones.  Arch Biochem Biophys. 1999;  368(2) 265-275
  • 164 Aucamp J, Gaspar A, Hara Y, Apostolides Z. Inhibition of xanthine oxidase by catechins from tea (Camellia sinensis).  Anticancer Res. 1997;  17(6D) 4381-4385
  • 165 van Golde P H, van der W M, Bouma B N, van de Wiel A. Characteristics of piraltin, a polyphenol concentrate, produced by freeze-drying of red wine.  Life Sci. 2004;  74(9) 1159-1166
  • 166 de Gaetano G. Low-dose aspirin and vitamin E in people at cardiovascular risk: a randomised trial in general practice. Collaborative Group of the Primary Prevention Project.  Lancet. 2001;  357(9250) 89-95
  • 167 Corrao G, Rubbiati L, Bagnardi V, Zambon A, Poikolainen K. Alcohol and coronary heart disease: a meta-analysis.  Addiction. 2000;  95(10) 1505-1523
  • 168 Corrao G, Bagnardi V, Zambon A, Arico S. Exploring the dose-response relationship between alcohol consumption and the risk of several alcohol-related conditions: a meta-analysis.  Addiction. 1999;  94(10) 1551-1573
  • 169 White I R, Altmann D R, Nanchahal K. Alcohol consumption and mortality: modelling risks for men and women at different ages.  BMJ. 2002;  325(7357) 191

Dylan W de LangeM.D. 

University Medical Center

Room F02.126, Heidelberglaan 100

3508 GA Utrecht, The Netherlands

    >