References
<A NAME="RG31604ST-1">1</A>
Ugi I.
Isonitrile Chemistry
Academic Press;
New York:
1971.
<A NAME="RG31604ST-2">2</A>
Elschenbroich G.
Salzer A.
Organometallchemie
Teubner;
Stuttgart:
1993.
<A NAME="RG31604ST-3">3</A>
Vicente J.
Abad JA.
Frankland AD.
Lopez-Serrano J.
de Arrellano MCR.
Jones PG.
Organometallics
2002,
21:
272
<A NAME="RG31604ST-4">4</A>
Albers MO.
Coville NJ.
Coord. Chem. Rev.
1984,
53:
227
<A NAME="RG31604ST-5">5</A>
Trost BM.
Merlic CA.
J. Am. Chem. Soc.
1990,
112:
9590
<A NAME="RG31604ST-6A">6a</A>
Kazmaier U.
Schauß D.
Pohlman M.
Org. Lett.
1999,
1:
1017
<A NAME="RG31604ST-6B">6b</A>
Kazmaier U.
Schauß D.
Pohlman M.
Raddatz S.
Synthesis
2000,
914
<A NAME="RG31604ST-6C">6c</A>
Kazmaier U.
Pohlman M.
Schauß D.
Eur. J. Org. Chem.
2000,
2761
<A NAME="RG31604ST-6D">6d</A>
Braune S.
Kazmaier U.
J. Organomet. Chem.
2002,
641:
26
<A NAME="RG31604ST-7A">7a</A>
Braune S.
Kazmaier U.
Angew. Chem. Int. Ed.
2003,
42:
306 ; Angew. Chem. 2003, 115, 318
<A NAME="RG31604ST-7B">7b</A>
Mancuso J.
Lautens M.
Org. Lett.
2003,
5:
1653
<A NAME="RG31604ST-8">8</A> Recent reviews:
Dömling A.
Ugi I.
Angew. Chem. Int. Ed.
2000,
39:
3168 ; Angew. Chem. 2000, 112, 3300 and references cited therein
<A NAME="RG31604ST-9">9</A>
Passerini M.
Gazz. Chim. Ital.
1921,
51:
126
<A NAME="RG31604ST-10A">10a</A>
Ugi I.
Meyr R.
Chem. Ber.
1960,
93:
239
<A NAME="RG31604ST-10B">10b</A>
Ugi I.
Angew. Chem., Int. Ed. Engl.
1962,
1:
8 ; Angew. Chem. 1962, 74, 9 and references cited therein
<A NAME="RG31604ST-11A">11a</A>
Nair V.
Vinod AU.
Nair JS.
Sreekanth AR.
Rath NP.
Tetrahedron Lett.
2000,
41:
6675
<A NAME="RG31604ST-11B">11b</A>
Nair V.
Vinod AU.
Chem. Commun.
2000,
1019
<A NAME="RG31604ST-12">12</A>
Yavari I.
Adib M.
Sayahi MH.
J. Chem. Soc., Perkin Trans. 1
2002,
2343
<A NAME="RG31604ST-13">13</A>
Grigg R.
Lansdell MI.
Thornton-Pett M.
Tetrahedron
1999,
2025
<A NAME="RG31604ST-14A">14a</A>
Hayashi T.
Sawamura M.
Ito Y.
Tetrahedron
1992,
1999
<A NAME="RG31604ST-14B">14b</A>
Soloshonok VA.
Kacharov AD.
Avilov DV.
Ishikawa K.
Nagashima N.
Hayashi T.
J. Org. Chem.
1997,
62:
3470 ; and references cited therein
<A NAME="RG31604ST-15A">15a</A>
Zhou XT.
Lin YR.
Dai LX.
Sun J.
Tetrahedron
1998,
54:
12445
<A NAME="RG31604ST-15B">15b</A>
Caldarelli M.
Habermann J.
Ley SV.
J. Chem. Soc., Perkin Trans. 1
1999,
107
<A NAME="RG31604ST-16">16</A> Review:
Schöllkopf U.
Angew. Chem., Int. Ed. Engl.
1977,
16:
339 ; Angew. Chem. 1977, 89, 351
<A NAME="RG31604ST-17">17</A>
Ito Y.
Sawamura M.
Matsuoka M.
Matsumoto Y.
Hayashi T.
Tetrahedron Lett.
1987,
28:
4849
<A NAME="RG31604ST-18">18</A>
α-Alkylated isonitriles were probably used to avoid double allylation and epimerization
if chiral substrates or ligands are used.
<A NAME="RG31604ST-19">19</A>
Saegusa T.
Kobayashi S.
Ito Y.
Yasuda N.
J. Am. Chem. Soc.
1968,
90:
4182
<A NAME="RG31604ST-20">20</A>
Lamberto M.
Corbett DF.
Kilburn JD.
Tetrahedron Lett.
2003,
44:
1347
<A NAME="RG31604ST-21A">21a</A>
Hebach C.
Kazmaier U.
Chem. Commun.
2003,
596
<A NAME="RG31604ST-21B">21b</A>
Kazmaier U.
Hebach C.
Synlett
2003,
3330
<A NAME="RG31604ST-22">22</A>
General Procedure for the Allylic Alkylation of Isocyanoacetates: Cs2CO3 (1 equiv) was dissolved in anhyd THF (to make a 0.5 M solution) under Ar in a two-neck
flask. Isocyanoacetate (1 equiv) was added, and the mixture was stirred for 15 min.
A solution of 2 mol% [PdCl(allyl)]2, 4 mol% dppe and allyl carbonate (or phosphate, 1 equiv) was prepared in mL anhyd
THF (to make a solution 0.5 M in allyl carbonate or phosphate) under argon and was
stirred for 15 min before it was added slowly to the solution of the deprotonated
isocyanide. The mixture was heated to reflux until all carbonate was consumed (TLC).
After cooling to r.t. 1 M KHSO4 was added and the aqueous layer was extracted three times with Et2O. After drying (Na2SO4) and evaporation of the solvent, the crude product was purified by flash chromatography.
Compound 3: Substitution product 3 was obtained as major regioisomer from 2a (0.5 mmol scale) as a pale yellow oil in 93% yield. 1H NMR (500 MHz, CDCl3): δ = 1.13-1.26 (m, 6 H, 1-H, 12-H), 2.98 (m, 1 H, 2-H), 4.14-4.38 (m, 3 H, 9-H,
11-H), 6.02 (dd, 3
J
3,4 = 15.8 Hz, 3
J
3,2 = 9.9 Hz, 0.5 H, 3-H), 6.04 (dd, 3
J
3,4 = 15.8 Hz,3
J
3,2 = 9.7 Hz, 0.5 H, 3-H), 6.40 (d, 3
J
4,3 = 15.8 Hz, 0.5 H, 4-H), 6.47 (d, 3
J
4,3 = 15.8 Hz, 0.5 H, 4-H), 7.15-7.33 (m, 5 H, 6-H-8-H). 13C NMR (125 Hz, CDCl3): δ = 15.2 (C-12), 18.0 (C-1), 40.0 (C-2), 62.6 (C-9, C-11), 126.4 (C-3), 128.3 (C-7),
128.6 (C-8), 132.3 (C-6), 133.0 (C-4), 136.4 (C-5), 161.1 (C-13), 165.9 (C-10).
Compound 6: Substitution product 6 was obtained from 1 mmol carbonate 5a in 89% yield as a pale yellow oil. 1H NMR (500 MHz, CDCl3): δ = 1.04 (d, 3
J
1,2 = 6.6 Hz, 1.5 H, 1-H), 1.12 (d, 3
J
1,2 = 6.7 Hz, 1.5 H, 1-H), 1.24 (t, 3
J
10,9 = 7.3 Hz, 3 H, 10-H), 1.62 (m, 3 H, 5-H), 2.74 (m, 1 H, 2-H), 4.10 (d, 3
J
6,2 = 7.1 Hz, 1 H, 6-H), 4.18 (q, 3
J
9,10 = 7.3 Hz, 2 H, 9-H), 5.32 (m, 1 H, 4-H), 5.53 (m, 1 H, 3-H). 13C NMR (125 MHz, CDCl3): δ = 10.8 (C-10), 11.9 (C-5), 12.7 (C-1), 37.3 (C-2), 60.2 (C-6, C-9), 125.0 (C-4),
127.7 (C-3), 158.2 (C-7), 168.8 (C-8).
<A NAME="RG31604ST-23">23</A>
Tanigawa Y.
Tetrahedron Lett.
1982,
5549
<A NAME="RG31604ST-24">24</A>
Preparation of Allylic Phosphonate 7c: DMAP (122 mg, 1.0 mmol) was added to a solution of cyclohexenol (980 mg, 10.0 mmol)
in pyridine (10 mL). The solution was cooled to 0 °C before diethoxyphosphoryl chloride
(2.65 g, 15.4 mmol) was added slowly. The mixture was warmed to r.t. overnight and
the volatile components were removed in vacuo. Hexane was added to the residue and
the precipitated pyridinium hydrochloride was filtered off. The solvent was removed
in vacuo and 7c was obtained in 78% yield (1.82 g, 7.76 mmol) as a pale yellow oil, which was used
directly for allylic alkylations according to the general procedure. 1H NMR (500 MHz, CDCl3): δ = 1.25 (t, 3
J
8,7 = 7.0 Hz, 6 H, 8-H), 1.54-2.02 (m, 6 H, 4-H-6-H), 4.04 (q, 3
J
7,8 = 7.3 Hz, 4 H, 7-H), 4.81 (m, 1 H, 1-H), 5.72 (m, 1 H, 3-H), 5.87 (m, 1 H, 2-H).
13C NMR (125 MHz, CDCl3): δ = 16.1 (d, 4
J
8,P = 6.4 Hz, C-8), 18.4 (C-5), 29.9 (d, 3
J
6,p = 4.3 Hz, C-6), 35.2 (C-4), 63.5 (d, 2
J
7,P = 3.2 Hz, C-7), 72.1 (d, 3
J
1,P = 6.4 Hz, C-1), 126.3 (C-3), 132.7 (C-2).
<A NAME="RG31604ST-25">25</A>
Substitution product 8 was obtained from crude 7c (2 mmol) in 91% yield as pale yellow liquid. 1H NMR (500 MHz, CDCl3): δ = 1.26 (t, 3
J
11,10 = 7.3 Hz, 3 H, 11-H), 1.56-1.97 (m, 6 H, 4-H-6-H), 2.74 (m, 1 H, 1-H), 4.07 (d, 3
J
7,1 = 5.4 Hz, 0.5 H, 7-H), 4.17 (d, 3
J
7,1 = 5.4 Hz, 0.5 H, 7-H), 4.22 (q, 3
J
10,11 = 7.3 Hz, 2 H, 10-H), 5.43 (m, 1 H, 3-H), 5.88 (m, 1 H, 2-H). 13C NMR (125 MHz, CDCl3): δ = 14.1 (C-11), 20.8 (C-6), 23.6 (C-5), 24.6 (C-4), 38.7 (C-1), 62.6 (C-7, C-10),
125.0 (C-3), 132.0 (C-2), 160.3 (C-8), 166.1 (C-9).