References
<A NAME="RG30004ST-1">1</A>
Jackson A.
Meth-Cohn O.
J. Chem. Soc., Chem. Commun.
1995,
1319
<A NAME="RG30004ST-2">2</A>
Chen BC.
Bednarz MS.
Zhao R.
Sundeen JE.
Chen P.
Shen Z.
Skoumbourdis AP.
Barrish JC.
Tetrahedron Lett.
2000,
41:
5453
<A NAME="RG30004ST-3">3</A>
Kobayashi K.
Nagato S.
Kawakita M.
Morikawa O.
Konishi H.
Chem. Lett.
1995,
575
<A NAME="RG30004ST-4">4</A>
Kakehi A.
Ito S.
Hayashi S.
Fujii T.
Bull. Chem. Soc. Jpn.
1995,
68:
3573
<A NAME="RG30004ST-5">5</A>
Martinez J.
Laur J.
Synthesis
1982,
979
<A NAME="RG30004ST-6">6</A>
Floersheimer A.
Kula MR.
Monatsh. Chem.
1988,
119:
1323
<A NAME="RG30004ST-7">7</A>
Ugi I.
Arora A.
Burghard H.
Eberle G.
Eckert H.
George G.
Gokel G.
Herlinger H.
Hinrichs EV.
Hoffman P.
Kleinmann H.
Klusacek H.
Lam HL.
Marquanding D.
Nah HS.
Offermann K.
Rehn D.
Stüber S.
Tamasi M.
Urban R.
Wackerle L.
Zahr S.
Zychlinski HV.
Peptides 1974
Wolman Y.
Israel University Press;
Jerusalem:
1975.
p.71-92
<A NAME="RG30004ST-8">8</A>
Sheehan JC.
Yang DDH.
J. Am. Chem. Soc.
1958,
80:
1154
<A NAME="RG30004ST-9">9</A>
Chen FMR.
Benoiton NL.
Synthesis
1979,
709
<A NAME="RG30004ST-10">10</A>
Giesemann G.
Ugi I.
Synthesis
1983,
788
<A NAME="RG30004ST-11">11</A>
Reddy PG.
Kumar KGD.
Baskaran S.
Tetrahedron Lett.
2000,
41:
9149
<A NAME="RG30004ST-12">12</A>
Yale HL.
J. Org. Chem.
1971,
36:
3238
<A NAME="RG30004ST-13">13</A>
Chancellor T.
Morton C.
Synthesis
1994,
1023
<A NAME="RG30004ST-14">14</A>
Giard T.
Bénard D.
Plaquevent JC.
Synthesis
1998,
297
<A NAME="RG30004ST-15">15</A>
Hill DR.
Hsiao C.
Kurukulasuriya R.
Wittemberg SJ.
Org. Lett.
2002,
4:
111
<A NAME="RG30004ST-16">16</A>
Schmidhammer H.
Brossi A.
Can. J. Chem.
1982,
60:
3055
<A NAME="RG30004ST-17">17</A>
Duczek W.
Deutsch J.
Vieth S.
Niclas H.-J.
Synthesis
1996,
37
<A NAME="RG30004ST-18A">18a</A>
Falorni M.
Porcheddu A.
Taddei M.
Tetrahedron Lett.
1999,
40:
4395
<A NAME="RG30004ST-18B">18b</A>
Falorni M.
Giacomelli G.
Porcheddu A.
Taddei M.
J. Org. Chem.
1999,
64:
8962
<A NAME="RG30004ST-18C">18c</A>
Falchi A.
Giacomelli G.
Porcheddu A.
Taddei M.
Synlett
2000,
275
<A NAME="RG30004ST-18D">18d</A>
De Luca L.
Giacomelli G.
Taddei M.
J. Org. Chem.
2001,
66:
2534
<A NAME="RG30004ST-18E">18e</A>
De Luca L.
Giacomelli G.
Porcheddu A.
Org. Lett.
2001,
3:
1519
<A NAME="RG30004ST-18F">18f</A>
De Luca L.
Giacomelli G.
Porcheddu A.
Org. Lett.
2001,
3:
3041
<A NAME="RG30004ST-18G">18g</A>
De Luca L.
Giacomelli G.
Porcheddu A.
Org. Lett.
2002,
4:
553
<A NAME="RG30004ST-18H">18h</A>
De Luca L.
Giacomelli G.
Porcheddu A.
J. Org. Chem.
2002,
67:
5152
<A NAME="RG30004ST-18I">18i</A>
De Luca L.
Giacomelli G.
Porcheddu A.
J. Org. Chem.
2002,
67:
6272
<A NAME="RG30004ST-18J">18j</A>
De Luca L.
Giacomelli G.
Masala S.
Porcheddu A.
J. Org. Chem.
2003,
68:
4999
<A NAME="RG30004ST-18K">18k</A>
Giacomelli G.
Porcheddu A.
Salaris M.
Org. Lett.
2003,
5:
2715
<A NAME="RG30004ST-19">19</A>
Kaminski ZJ.
Tetrahedron Lett.
1985,
26:
2901
<A NAME="RG30004ST-20">20</A>
Kuhnert N.
Angew. Chem. Int. Ed.
2002,
41:
1863
<A NAME="RG30004ST-21">21</A>
Kaminski ZJ.
Paneth P.
O’Leary MH.
J. Org. Chem.
1991,
56:
5716
<A NAME="RG30004ST-22">22</A>
A. Conventional Procedure: Formic acid (0.35 g, 7.62 mmol), benzylamine (0.71 g, 7.62 mmol), 2-chloro-4,6-dimethoxy[1,3,5]
triazine (CDMT, 1.47 g, 8.30 mmol), 4-dimethylaminopyridine (DMAP, 0.03 g, 0.2 mmol)
and N-methylmorpholine (NMM, 0.92 mL, 8.30 mmol) were placed in this order in a flask containing
CH2Cl2 (20 mL) and maintained at r.t. The mixture was stirred at reflux (6 h), monitored
by TLC in order to control the end of the conversion, then diluted with CH2Cl2, washed twice with aq HCl (15 mL), aq NaHCO3 (15 mL), and brine (10 mL). The organic layer was dried (Na2SO4). Removal of the solvent in vacuo gave 0.98 g of chemically pure N-benzylformamide, (95%), mp 57 °C.
[12]
B. Microwave Procedure: TEA (1.2 mL, 8.38 mmol) and l-valine methyl ester hydrochloride (1.27 g, 7.62 mmol) were placed in a flask equipped
with a reflux condenser, containing CH2Cl2 (20.0 mL). Then formic acid (0.35 g, 7.62 mmol), CDMT (1.47 g, 8.30 mmol), DMAP (0.03
g, 0.20 mmol) and N-methylmorpholine (NMM, 0.92 mL, 8.30 mmol) were added in this order. The open flask
was irradiated at 35 °C (by modulation of the power) for 6 min in a self-tuning single
mode CEM DiscoverTM Focused Synthesizer. The solution was cooled rapidly at r.t. by passing compressed
air through the 25 microwave cavity for 1 min, then diluted with CH2Cl2 and worked up as above. 1H NMR (300 MHz, CDCl3): δ = 8.27 (s, 1 H), 6.23 (br s, 1 H), 4.67 (dd, 1 H, J = 9.0, 4.8 Hz), 3.76 (s, 3 H), 2.24-2.17 (m, 1 H), 0.97 (d, 3 H, J = 6.8 Hz), 0.92 (d, 3 H, J = 6.6 Hz).
(S)-Methyl 2-formamido-3-methylbutanoate from method A had [α]D
25 -27.2 (c 2.0, EtOH). Similarly, (S)-methyl 2-formamidobutanoate, (S)-methyl 2-formamido-3-phenyl-propanoate, and (S)-methyl 2-formamido-4-methyl-pentanoate were recovered and had [α]D
25 values of -36.1
(c 3.5, EtOH),
[13]
+85.3 (c 2.3, EtOH),
[14]
and -43.2 (c 1.2, EtOH), respectively.
[13]