Exp Clin Endocrinol Diabetes 2004; 112(10): 574-579
DOI: 10.1055/s-2004-830409
Article

J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

The Carboxyterminal Peptide of Chorionic Gonadotropin Facilitates Activation of the Marmoset LH Receptor

T. Müller1 , J. Gromoll1 , A. P. Simula2 , R. Norman2 , R. Sandhowe-Klaverkamp1 , M. Simoni1
  • 1Institute of Reproductive Medicine of the University of Münster, Münster, Germany
  • 2Reproductive Medicine Unit, Department of Obstetrics and Gynaecology, University of Adelaide, The Queen Elizabeth Hospital, Adelaide, Australia
Further Information

Publication History

Received: October 30, 2003 First decision: February 12, 2004

Accepted: March 25, 2004

Publication Date:
02 December 2004 (online)

Abstract

Luteinizing hormone (LH) and chorionic gonadotropin (CG) are heterodimeric glycoprotein hormones acting on the luteinizing hormone receptor (LHR). In the LHR, which is genomically encoded by eleven exons, exon 10 encodes for the hinge region and its elimination impairs LH action, while CG maintains normal activity. The two gonadotropins differ in the carboxyterminal peptide (CTP) present in CG but absent in LH. Since the marmoset monkey (Callithrix jacchus) LHR naturally lacks exon 10 (LHR type II), we generated two recombinant marmoset gonadotropin preparations, one consisting of the wild type CG and one of truncated CG lacking the CTP (CG-CTP). After calibration in a mouse Leydig cell bioassay against the WHO LH80/522 standard, the ED50 of the CG preparation on a COS7 cell line permanently expressing the marmoset LHR was 4.25 ± 0.21 IU/L (n = 3). Stimulation of the COS7 cell line with equipotent concentrations of CG and CG-CTP resulted in significantly different formation of cAMP (two-way ANOVA, p < 0.001). In particular, cAMP production stimulated by CG-CTP was 3 - 4 times lower compared to CG at the saturating CG concentration (8 IU/L). We conclude, supplementing one current model of LHR activation, that exon 10 might play a permissive role in releasing the constraint of the receptor upon hormone binding, resulting in receptor activation. We speculate that, when exon 10 is lacking, the CTP can overcome its absence and facilitates the opening of the receptor, resulting in normal activation.

References

  • 1 Amato F, Simula A P, Gameau L J, Norman R J. Expression, characterization and immunoassay of recombinant marmoset chorionic gonadotropin dimer and β-subunit.  J Endocrinol. 1998;  159 141-151
  • 2 Ascoli M, Fanelli F, Segaloff D L. The lutropin/choriogonadotropin receptor, A 2002 Perspective.  Endocr Rev. 2002;  23 141-174
  • 3 Albanese C, Colin I M, Crowley W F, Ito M, Pestell R G, Weiss J, Jameson J L. The gonadotropin genes: evolution of distinct mechanisms for hormonal control.  Recent Prog Horm Res. 1996;  51 23-58
  • 4 Atger M, Misrahi M, Sar S, Le Flem L, Dessen P, Milgrom E. Structure of the human luteinizing hormone-choriogonadotropin receptor gene: unusual promoter and 5′ non-coding regions.  Mol Cell Endocrinol. 1995;  111 113-123
  • 5 Bahl O P. Human chorionic gonadotropin, its receptor and mechanism of action.  Fed Proc. 1977;  36 2119-2127
  • 6 Bousfield G R, Butnev V Y, Gotschall R R, Baker V L, Moore W T. Structural features of mammalian gonadotropins.  Mol Cell Endocrinol. 1996;  125 3-19
  • 7 Chen H C, Shimohigashi Y, Dufau M L, Catt K J. Characterization and biological properties of chemically deglycosylated human chorionic gonadotropin.  J Biol Chem. 1982;  257 14446-14452
  • 8 Dufau M L. The luteinizing hormone receptor.  Ann Rev Physiol. 1998;  60 461-496
  • 9 Fiddes J C, Goodman H M. The cDNA for the beta-subunit of human chorionic gonadotropin suggests evolution of a gene by read-through into the 3′-untranslated region.  Nature. 1980;  286 684-687
  • 10 Galet C, Chopineau M, Martinat N, Combarnous Y, Guillou F. Expression of an in vitro biologically active equine LH/CG without C-terminal peptide (CTP) and/or β26 - 110 disulphide bridge.  J Endocrinol. 2000;  167 117-124
  • 11 Gharib S D, Wierman M E, Shupnik M A, Chin W W. Molecular biology of the pituitary gonadotropins.  Endocr Rev. 1990;  11 177-199
  • 12 Gromoll J, Eiholzer U, Nieschlag E, Simoni M. Male hypogonadism caused by a homozygous deletion of exon 10 of the luteinizing hormone receptor: Differential action of human chorionic gonadotropin and LH.  J Clin Endocrinol Metab. 2000;  85 2281-2286
  • 13 Gromoll J, Wistuba J, Terwort N, Godmann M, Müller T, Simoni M. A new subclass of the luteinizing hormone/chorionic gonadotropin receptor lacking exon 10 messenger RNA in the New World Monkey (Platyrrhini) lineage.  Biol Reprod. 2003;  69 75-80
  • 14 Jia X C, Oikawa M, Bo M, Tanaka T, Ny T, Boime I, Hsueh A J. Expression of human luteinizing hormone (LH) receptor: interaction with LH and chorionic gonadotropin from human but not equine, rat, and ovine species.  Mol Endocrinol. 1991;  5 759-768
  • 15 Klein J, Lobel L, Pollak S, Ferin M, Xiao E, Sauer M, Lustbader J W. Pharmacokinetics and pharmacodynamics of single-chain recombinant human follicle-stimulating hormone containing the human chorionic gonadotropin carboxyterminal peptide in the rhesus monkey.  Fertil Steril. 2002;  77 1248-1255
  • 16 Lapthorn A J, Harris D C, Littlejohn A, Lustbader J W, Canfield R E, Machin K J, Morgan F J, Isaacs N W. Crystal structure of human chorionic gonadotropin.  Nature. 1994;  369 455-461
  • 17 Maston G A, Ruvolo M. Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection.  Mol Biol Evol. 2002;  19 320-335
  • 18 Matzuk C, Boime I. Site-specific mutagenesis defines the intracellular role of the asparagine-linked oligosaccharides of chorionic gonadotropin beta subunit.  J Biol Chem. 1988 a;  263 17106-17111
  • 19 Matzuk C, Boime I. The role of the asparagine-linked oligosaccharides of the alpha subunit in the secretion and assembly of human chorionic gonadotropin.  J Cell Biol. 1988 b;  106 1049-1059
  • 20 Matzuk C, Keene J L, Boime I. Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction.  J Biol Chem. 1989;  264 2409-2414
  • 21 Matzuk M M, Hsueh A JW, Lapolt P, Tsafiri A, Keene J L, Boime I. The biological role of the carboxyterminal extension of human chorionic gonadotropin.  Endocrinology. 1990;  126 376-383
  • 22 Merz W E. Biosynthesis of human chorionic gonadotropin: a review.  Eur J Endocrinol. 1996;  135 269-284
  • 23 Müller T, Gromoll J, Simoni M. Absence of exon 10 of the human luteinizing hormone (LH) receptor impairs LH, but not human chorionic gonadotropin action.  J Clin Endocrinol Metab. 2003;  88 2242-2249
  • 24 Müller T, Simoni M, Pekel E, Luetjens C M, Chandolia R, Amato F, Norman R J, Gromoll J. Chorionic gonadotrophin beta subunit mRNA but not luteinising hormone beta subunit mRNA is expressed in the pituitary of the common marmoset (Callithrix jacchus).  J Mol Endocrinol. 2004;  32 115-128
  • 25 Muyan M, Furuhashi M, Sugahara T, Boime I. The carboxyterminal region of the β-subunits of LH and CG differentially influence secretion and assembly of the heterodimers.  Mol Endocrinol. 1996;  10 1678-1687
  • 26 Nishi S, Nakabayashi K, Kobilka B, Aaron J W, Hsueh A JW. The ectodomain of the luteinizing hormone receptor interacts with exoloop 2 to constrain the transmembrane region.  J Biol Chem. 2002;  277 3958-3964
  • 27 Pierce J G, Parsons T F. Glycoprotein hormones: structure and function.  Annual Rev Biochem. 1981;  50 465-495
  • 28 Ryan R J, Keutmann H T, Charlesworth M C, McCormick D J, Milius R P, Calvo F O, Vutyavanich T. Structure-function relationships of gonadotropins.  Recent Prog Horm Res. 1987;  43 383-429
  • 29 Schmidt A, Gromoll J, Weinbauer G F, Galla H-J, Chappel S, Simoni M. Cloning and expression of cynomolgus monkey (Macaca fascicularis) gonadotropins luteinizing hormone and follicle-stimulating hormone and identification of two polymorphic sites in the luteinizing hormone β subunit.  Mol Cell Endocrinol. 1999;  156 73-83
  • 30 Shao K, Balasubramanian S V, Pope C M, Bahl O P. Effect of individual N-glycosyl chains in the β-subunit on the conformation of human choriogonadotropin.  Mol Cell Endocrinol. 1998;  146 39-48
  • 31 Simula A P, Amato F, Faast R, Lopata A, Berka J, Norman R J. Luteinizing hormone/chorionic gonadotropin bioactivity in the common marmoset (Callithrix jacchus) is due to a chorionic gonadotropin molecule with a structure intermediate between human chorionic gonadotropin and human luteinizing hormone.  Biol Reprod. 1995;  53 380-389
  • 32 Talmadge K, Vamvakopoulos N C, Fiddes J C. Evolution of the genes for the beta subunits of human chorionic gonadotropin and luteinizing hormone.  Nature. 1984;  307 37-40
  • 33 Themmen A PN, Huhtaniemi I T. Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function.  Endocr Rev. 2000;  21 551-583
  • 34 Tullner W W. Comparative aspects of primate gonadotropins.  Contrib Primatol. 1974;  3 235-257
  • 35 Wickings E J, Qazi M H, Nieschlag E. Determination of biologically active LH in the serum of male rheusus monkeys (Macaca mulatta).  J Reprod Fertil. 1979;  57 497-504
  • 36 Wilson C A, Leigh A J, Chapman A J. Gonadotropin glycosylation and function.  J Endocrinol. 1990;  125 3-14
  • 37 Zhang F P, Kero J, Huhtaniemi I. The unique exon 10 of the human luteinizing hormone receptor is necessary for expression of the receptor protein at the plasma membrane in the human luteinizing hormone receptor, but deleterious when inserted into the human follicle-stimulating hormone receptor.  Mol Cell Endocrinol. 1998;  142 165-174
  • 38 Zheng H, Phang T, Yong S S, Ji I, Ji T H. The role of the hinge region of the luteinizing hormone receptor in hormone interaction and signal transduction.  J Biol Chem. 2001;  276 3451-3458

Prof. Dr. Manuela Simoni

Institute of Reproductive Medicine of the University of Münster

Domagkstraße 11

48129 Münster

Phone: + 492518356444

Fax: + 49 25 18 35 60 93

Email: simoni@uni-muenster.de

    >