Neuropediatrics 2004; 35(6): 325-328
DOI: 10.1055/s-2004-830366
Original Article

Georg Thieme Verlag KG Stuttgart · New York

Bone Mineral Density in a Paediatric Spinal Muscular Atrophy Population

M. Kinali1 , L. M. Banks2 , E. Mercuri1 , 3 , A. Y. Manzur1 , F. Muntoni1
  • 1Dubowitz Neuromuscular Centre, Department of Paediatrics, Imperial College, London, UK
  • 2Department of Musculoskeletal Surgery, Imperial College, London, UK
  • 3Department of Child Neurology, Catholic University, Rome, Italy
Weitere Informationen

Publikationsverlauf

Received: July 8, 2004

Accepted after Revision: September 10, 2004

Publikationsdatum:
15. November 2004 (online)

Abstract

Background/Objective: Reduced bone mineral density is a feature of patients with reduced mobility. The aim of this study was to assess bone mineral density in children with spinal muscular atrophy (SMA) and to evaluate bone mineral density in relation to age and motor disability.

Patients and Methods: We analysed bone mineral density measurements on twelve patients (4 with SMA type II, mean age 8.2 years [range 6.2 - 11.8]; 8 with SMA type III, mean age 11.8 years [range 5.5 - 20]). Dual-energy X-ray absorptiometry (DXA) was used to determine total body bone mineral density. The results were matched with published normative data for age and sex for a white Caucasian population.

Results: The total body bone mineral density values were in the normal range in 10 out of the 12 SMA patients studied, all below the age of 17 (mean age 8.8 years [range 5.5 - 16.33]). Four of them had SMA II and six had had SMA III and were still ambulant. Total body bone mineral density was, however, below 2 SD in the remaining 2 patients aged 19.7 and 20 years, respectively. Both had SMA III but had lost independent ambulation for a period of 3.5 years.

Conclusion: Our results suggest that bone mineral density was surprisingly normal in most of the young SMA children studied. This is in contrast to what is reported in other conditions characterised by reduced mobility such as Duchenne muscular dystrophy. However, there was a tendency to decreasing bone mineral density with increasing age, not always related to the ability to walk, with the two eldest patients having the lowest values in spite of a relatively good mobility. These findings suggest that factors other than mobility are likely to have an effect on SMA bone mineral density.

References

  • 1 Adachi J D, Bensen W G, Brown J. et al . Intermittent etidronate therapy to prevent corticosteroid induced osteoporosis.  N Engl J Med. 1997;  337 382-387
  • 2 Aparicio L F, Jurkovic M, DeLullo J. Decreased bone density in ambulatory patients with Duchenne muscular dystrophy.  J Ped Orthop. 2002;  22 179-181
  • 3 Bachrach L K. Acquisition of optimal bone mass in childhood and adolescence.  Trends Endocr Metab. 2001;  12 22-27
  • 4 Chestnut III C H. Bone mass and exercise.  Am J Med. 1993;  95 (5 A) 34S-36S
  • 5 El-Desouki M, Al-Jurayyan N. Bone mineral density and bone scintigraphy in children and adolescents with osteomalacia.  Eur J Nucl Med. 1997;  24 202-205
  • 6 Emery A E. Population frequencies of inherited neuromuscular diseases - a world survey.  Neuromusc Disord. 1991;  1 83-91
  • 7 Fallon L, Harton G L, Sisson M E, Rodriguez E. et al . Preimplantation genetic diagnosis for spinal muscular atrophy type I.  Neurology. 1999;  53 1087-1090
  • 8 Granata C, Giannini S, Villa D. et al . La frattura nelle miopatie.  Chirurgica Organi. 1991;  76 39-45
  • 9 Gray B, Hsu J D, Furumasu J. Fractures caused by falling from a wheelchair in patients with neuromuscular disease.  Dev Med Child Neuro. 1992;  34 589-592
  • 10 Hardin D S, Arumugam R, Seilheimer D K, LeBlanc A, Ellis K J. Normal bone mineral density in cystic fibrosis.  Arch Dis Child. 2001;  84 363-368
  • 11 Hatano E, Masuda K, Kameo H. Fractures in Duchenne muscular dystrophy - chiefly about their causes.  Hiroshima J Med Sci. 1986;  35 429-433
  • 12 Hogler W, Briody J N, Woodhead H J. et al . Importance of lean mass in the interpretation of total body densitometry in children and adolescents.  J Pediatr. 2003;  143 81-88
  • 13 Hsu J D. Extremity fractures in children with neuromuscular disorders.  John Hopkins Med J. 1979;  145 89-93
  • 14 Hsu J D. Skeletal changes in children with neuromuscular disorders.  Prog Clin Biol Res. 1982;  101 553-557
  • 15 Kinali M, Mercuri E, Main M. et al . Pilot trial of albuterol in spinal muscular atrophy.  Neurology. 2002;  59 609-610
  • 16 King W, Levin R, Schmid R. et al . Prevalence of reduced bone mass in children and adults with spastic quadriplegia.  Dev Med Child Neurol. 2003;  45 12-16
  • 17 Kreipe R E. Bone mineral density in adolescents.  Pediatric Annals. 1995;  24 308-315
  • 18 Larson C M, Henderson R C. Bone mineral density and fractures in boys with Duchenne muscular dystrophy.  J Ped Orthop. 2000;  20 71-74
  • 19 Lefebvre S, Burglen L, Reboullet S. et al . Identification and characterization of a spinal muscular atrophy-determining gene.  Cell. 1995;  80 155-165
  • 20 McDonald D GM, Kinali M, Gallagher A C. et al . Fracture prevalence in Duchenne muscular dystrophy.  Dev Med Child Neurol. 2002;  44 695-698
  • 21 Munsat T L. Workshop Report International SMA collaboration.  Neuromusc Disord. 1991;  1 81
  • 22 Munsat T L, Davies K E. Meeting report. International SMA Consortium Meeting. 1992 2: 423-428
  • 23 Njeh C F, Samat S B, Nightingale A. et al . Radiation dose and in vitro precision in paediatric bone mineral density measurement using dual X-ray absorptiometry.  Br J Radiol. 1997;  70 719-727
  • 24 Osteoporosis prevention. diagnosis and therapy . NIH Consensus Development Panel on Osteoporosis, prevention, diagnosis and therapy.  JAMA. 2001;  6 785-795
  • 25 Rubio-Gozalbo M E, Hamming E, van Kroonenburgh M JPG. et al . Bone mineral density in patients with classic galactosaemia.  Arch Dis Child. 2002;  87 57-60
  • 26 Saag K G, Emkey R, Schnitzer T J. et al . Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis.  N Engl J Med. 1998;  339 292-299
  • 27 Sinaki M. Exercise and osteoporosis.  Arch Phys Med Rehabil. 1989;  70 220-229
  • 28 Smith E L, Gilligan C. Physical activity effects on bone metabolism.  Calcif Tissue Int. 1991;  49 (Suppl) S50-S54
  • 29 Van der Sluis I M, de Ridder M AJ, Boot A M. et al . Reference data for bone density and body composition measured with dual energy x ray absorptiometry in white children and young adults.  Arch Dis Child. 2002;  87 341-347
  • 30 Vestergaard P, Glerup H, Steffensen B F. et al . Fracture risk in patients with muscular dystrophy and spinal muscular atrophy.  J Rehabil Med. 2001;  33 150-155
  • 31 Wang J, Thornton J C, Horlick M. et al . Dual X-Ray absorptiometry in pediatric studies.  J Clin Dens. 1999;  2 135-141
  • 32 Warner J T, Cowan F DJ, Evans W D. et al . Measured and predicted bone mineral content in healthy boys and girls aged 6 - 18 years: adjustment for body size and puberty.  Acta Paediatr. 1998;  87 244-249

Professor Francesco Muntoni

Dubowitz Neuromuscular Centre
Department of Paediatrics
Imperial College
Hammersmith Hospital

Du Cane Road

London W12 OHN

U.K.

eMail: f.muntoni@ic.ac.uk

    >