Semin Neurol 2004; 24(1): 21-30
DOI: 10.1055/s-2004-829585
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Pathophysiology of Myasthenia Gravis

Benjamin W. Hughes1 , Maria Luisa Moro De Casillas1 , Henry J. Kaminski1 , 2
  • 1Department of Neurology, Case Western Reserve University, Louis Stokes Cleveland DVA Medical Center, University Hospitals of Cleveland, Cleveland, Ohio
  • 2Department of Neurosciences, Case Western Reserve University, Louis Stokes Cleveland DVA Medical Center, University Hospitals of Cleveland, Cleveland, Ohio
Further Information

Publication History

Publication Date:
01 July 2004 (online)

Myasthenia gravis (MG) is arguably the best understood autoimmune disease, and its study has also led to fundamental appreciation of mechanisms of neuromuscular transmission. MG is caused by antibodies against the acetylcholine receptor (AChR), which produce a compromise in the end-plate potential, reducing the safety factor for effective synaptic transmission. It is clear that AChR antibody destruction of the postsynaptic surface is dependent on complement activation. A muscle-specific kinase has been recently found to be an antigenic target in MG patients without antibodies against the AChR. Autoantibody production in MG is a T-cell-dependent process, but how a breakdown in tolerance occurs is not known. In MG there is an interesting differential involvement of muscle groups, in particular, the extraocular muscles. This article reviews normal neuromuscular transmission, mechanisms of the autoimmune process of MG, and differential susceptibility of eye muscles to MG.

REFERENCES

  • 1 Engel A G. Anatomy and molecular architecture of the neuromuscular junction. In: Engel AG Myasthenia Gravis and Myasthenic Disorders. Oxford; Oxford University Press 1999: 3-39
  • 2 Sanes J R, Lichtman J W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus.  Nat Rev Neurosci. 2001;  2 791-805
  • 3 Boonyapisit K, Kaminski H J, Ruff R L. The molecular basis of neuromuscular transmission disorders.  Am J Med. 1999;  106 97-113
  • 4 Ruff R L. Neurophysiology of the neuromuscular junction: overview.  Ann N Y Acad Sci. 2003;  998 1-10
  • 5 Kaminski H J. Myasthenia Gravis and Related Disorders. Totowa, NJ; Humana Press 2003: 1-396
  • 6 Stanley E F. Presynaptic calcium channels and the transmitter release mechanism.  Ann N Y Acad Sci. 1993;  681 368-372
  • 7 Poage R E, Meriney S D. Presynaptic calcium influx, neurotransmitter release, and neuromuscular disease.  Physiol Behav. 2002;  77 507-512
  • 8 Fon E A, Edwards R H. Molecular mechanisms of neurotransmitter release.  Muscle Nerve. 2001;  24 581-601
  • 9 Schiavo G, Matteoli M, Montecucco C. Neurotoxins affecting neuroexocytosis.  Physiol Rev. 2000;  80 717-766
  • 10 Abbas L. Synapse formation: let's stick together.  Curr Biol. 2003;  13 R25-R27
  • 11 Arber S, Burden S J, Harris A J. Patterning of skeletal muscle.  Curr Opin Neurobiol. 2002;  12 100-103
  • 12 McMahan U J, Sanes J R, Marshall L M. Cholinesterase is associated with the basal lamina at the neuromuscular junction.  Nature. 1978;  271 172-174
  • 13 Smit A B, Syed N I, Schaap D et al.. A glia-derived acetylcholine-binding protein that modulates synaptic transmission.  Nature. 2001;  411 261-268
  • 14 Brejc K, van Dijk W J, Klaassen R V et al.. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors.  Nature. 2001;  411 269-276
  • 15 Wood S J, Slater C R. Safety factor at the neuromuscular junction.  Prog Neurobiol. 2001;  64 393-429
  • 16 Vincent A. The neuromuscular junction and neuromuscular transmission. In: Karpati G, Hilton-Jones D, Griggs RC Disorders of Voluntary Muscle. Cambridge; Cambridge University Press 2001: 142-167
  • 17 Sieb J P, Dorfler P, Tzartos S et al.. Congenital myasthenic syndromes in two kinships with end-plate acetylcholine receptor and utrophin deficiency.  Neurology. 1998;  50 54-61
  • 18 Gautam M, Noakes P G, Mudd J et al.. Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice.  Nature. 1995;  377 232-236
  • 19 Burke G, Cossins J, Maxwell S et al.. Rapsyn mutations in hereditary myasthenia: distinct early- and late-onset phenotypes.  Neurology. 2003;  61 826-828
  • 20 Merlie J P, Sanes J R. Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibers.  Nature. 1985;  317 66-68
  • 21 Brenman J E, Chao D S, Gee S H et al.. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains.  Cell. 1996;  84 757-767
  • 22 Kusner L L, Kaminski H J. Nitric oxide synthase is concentrated at the skeletal muscle endplate.  Brain Res. 1996;  730 238-242
  • 23 Wang T, Xie Z, Lu B. Nitric oxide mediates activity dependent synaptic suppression at developing neuromuscular synapses.  Nature. 1995;  374 262-266
  • 24 Kaminski H J, Ruff R L. Insights into possible skeletal muscle nicotinic acetylcholine receptor (AChR) changes in some congenital myasthenias from physiological studies, point mutations, subunit substitutions of the AChR.  Ann N Y Acad Sci. 1993;  681 435-450
  • 25 Lindstrom J. Acetylcholine receptors and myasthenia.  Muscle Nerve. 2000;  23 453-477
  • 26 Lindstrom J. Acetylcholine receptor structure. In: Kaminski HJ Myasthenia Gravis and Related Disorders. Totowa, NJ; Humana Press 2003: 15-52
  • 27 Unwin N. Projection structure of the nicotinic acetylcholine receptor: distinct conformations of the α subunits.  J Mol Biol. 1996;  257 586-596
  • 28 Unwin N, Toyoshima C, Kubalek E. Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized torpedo postsynaptic membranes.  J Cell Biol. 1988;  107 1123-1138
  • 29 Brehm P, Henderson L. Regulation of acetylcholine receptor channel function during development of skeletal muscle.  Dev Biol. 1988;  129 1-11
  • 30 Kaminski H J, Kusner L L, Block C H. Expression of acetylcholine receptor isoforms at extraocular muscle endplates.  Invest Ophthalmol Vis Sci. 1996;  37 345-351
  • 31 MacLennan C, Beeson D, Buijs A-M, Vincent A, Newsom-Davis J. Acetylcholine receptor expression in human extraocular muscles and their susceptibility to myasthenia gravis.  Ann Neurol. 1997;  41 423-431
  • 32 Engel A G, Ohno K, Bouzat C, Sine S M, Griggs R C. End-plate acetylcholine receptor deficiency due to nonsense mutations in the epsilon subunit.  Ann Neurol. 1996;  40 810-817
  • 33 Ruegg M A, Bixby J L. Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction.  Trends Neurosci. 1998;  21 22-27
  • 34 Wallace B G. Agrin-induced specializations contain cytoplasmic, membrane, and extracellular matrix-associated components of the postsynaptic apparatus.  J Neurosci. 1989;  9 1294-1302
  • 35 Wallace B G, Qu Z, Huganir R L. Agrin induces phosphorylation of the nicotinic acetylcholine receptor.  Neuron. 1991;  6 869-878
  • 36 Wallace B G. The mechanism of agrin-induced acetylcholine receptor aggregation.  Philos Trans R Soc Lond B Biol Sci. 1991;  331 273-280
  • 37 Gautam M, Noakes P G, Moscoso L et al.. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice.  Cell. 1996;  85 525-535
  • 38 Glass D J, Bowen D C, Stitt T N et al.. Agrin acts via a MuSK receptor complex.  Cell. 1996;  85 513-523
  • 39 Wallace B. scFvs get down to basics: how MuSK makes synapses.  Nat Biotechnol. 1997;  15 721-722
  • 40 Wickelgren I. Synapse-making molecules revealed.  Science. 1996;  272 1100
  • 41 Lindstrom J M, Seybold M D, Lennon V A, Whittingham S, Duane D D. Antibody to acetylcholine receptor in myasthenia gravis: prevalence, clinical correlates, and diagnostic value.  Neurology. 1976;  26 1054-1059
  • 42 Engel A G, Lambert E H, Howard F M. Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis. Ultrastructure and light microscopic localization and electrophysiological correlations.  Mayo Clin Proc. 1977;  52 267-280
  • 43 Toyka K V, Drachman D B, Griffin D E, Pestronk D. Myasthenia gravis study of humoral immune mechanisms by transfer to mice.  N Engl J Med. 1977;  296 125-131
  • 44 Pinching A J, Peters D K, Newsom-Davis J. Remission of myasthenia gravis following plasma exchange.  Lancet. 1976;  2 1373-1376
  • 45 Patrick J, Lindstrom J. Autoimmune response to acetylcholine receptor.  Science. 1973;  180 871-872
  • 46 Conti-Fine B M, Kaminski H J. Autoimmune neuromuscular transmission disorders: myasthenia gravis and Lambert-Eaton myasthenic syndrome.  Continuum. 2001;  7 56-93
  • 47 Conti-Fine B, Bellone M, Howard J J, Protti M. Myasthenia Gravis: The Immunobiology of an Autoimmune Disease. Georgetown, TX; Neuroscience Intelligence, Unit: R.G. Landes 1997
  • 48 Drachman D, Angus C W, Adams R N, Kao I. Effect of myasthenic patients' immunoglobulin on acetylcholine receptor turnover: selectivity of degradation process.  Proc Natl Acad Sci USA. 1978;  75 3422-3426
  • 49 Sahashi K, Engel A G, Lambert E H, Howard Jr F M. Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis.  J Neuropathol Exp Neurol. 1980;  39 160-172
  • 50 Nakano S, Engel A G. Myasthenia gravis: quantitative immunocytochemical analysis of inflammatory cells and detection of complement membrane attack complex at the end-plate in 30 patients.  Neurology. 1993;  43 1167-1172
  • 51 Lennon V A, Seybold M E, Lindstrom J M, Cochrane C, Ulevitch R. Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis.  J Exp Med. 1978;  147 973-983
  • 52 Corey A L, Richman D P, Agius M A, Wollmann R L. Refractoriness to a second episode of experimental myasthenia gravis. Correlation with AChR concentration and morphologic appearance of the postsynaptic membrane.  J Immunol. 1987;  138 3269-3275
  • 53 Corey A L, Richman D P, Shuman C A, Gomez C M, Arnason B G. Use of monoclonal antiacetylcholine receptor antibodies to investigate the macrophage inflammation of acute experimental myasthenia gravis: refractoriness to a second episode of acute disease.  Neurology. 1985;  35 1455-1460
  • 54 Biesecker G, Gomez C M. Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with fab antibody to complement C5.  J Immunol. 1989;  142 2654-2659
  • 55 Tuzun E, Scott B G, Goluszko E, Higgs S, Christadoss P. Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis.  J Immunol. 2003;  171 3847-3854
  • 56 Miwa T, Song W C. Membrane complement regulatory proteins: insight from animal studies and relevance to human diseases.  Int Immunopharmacol. 2001;  1 445-459
  • 57 Walport M J. Complement.  N Engl J Med. 2001;  344 1058-1066
  • 58 Lin F, Kaminski H, Conti-Fine B, Wang W, Richmonds C, Medof M. Enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection.  J Clin Invest. 2002;  110 1269-1274
  • 59 Tzartos S, Seybold M, Lindstrom J. Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies.  Proc Natl Acad Sci USA. 1982;  79 188-192
  • 60 Manfredi A A, Protti M P, Bellone M, Moiola L, Conti-Tronconi B M. Molecular anatomy of an autoantigen: T and B epitopes on the nicotinic acetylcholine receptor in myasthenia gravis.  J Lab Clin Med. 1992;  120 13-21
  • 61 Gomez C M, Richman D P. Monoclonal anti-acetylcholine receptor antibodies with differing capacities to induce experimental autoimmune myasthenia gravis.  J Immunol. 1985;  135 234-241
  • 62 Strauss A JL, Seegal J C, Hsu J C, Burkholder P M, Nastuk W, Ossermann K E. Immunofluoresence demonstration of a muscle binding, complement fixing serum globulin fraction in myasthenia gravis.  Proc Soc Exp Biol Med. 1960;  105 177-184
  • 63 Aarli J A, Stefanson K, Marton L SG, Wollman R L. Patients with myasthenia gravis and thymoma have in their sera IgG antibodies against titin.  Clin Exp Immunol. 1990;  82 284-288
  • 64 Skeie G O, Mygland Å, Aarli J A, Gilhus N E. Titin antibodies in patients with late onset myasthenia gravis: clinical correlations.  Autoimmunity. 1995;  20 99-104
  • 65 Skeie G O, Lunde P K, Sejersted O M, Mygland A, Aarli J A, Gilhus N E. Myasthenia gravis sera containing antiryanodine receptor antibodies inhibit binding of [3H]-ryanodine to sarcoplasmic reticulum.  Muscle Nerve. 1998;  21 329-335
  • 66 Mygland Å, Vincent A, Newsom-Davis J et al.. Autoantibodies in thymoma-associated myasthenia gravis with myositis or neuromyotonia.  Arch Neurol. 2000;  57 527-531
  • 67 Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies.  Nat Med. 2001;  7 365-368
  • 68 Evoli A, Tonali P A, Padua L et al.. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis.  Brain. 2003;  126 2304-2311
  • 69 Vincent A, Bowen J, Newsom-Davis J, McConville J. Seronegative generalised myasthenia gravis: clinical features, antibodies, and their targets.  Lancet Neurol. 2003;  2 99-106
  • 70 Yang B, McIntosh K R, Drachman D B. How subtle differences in MHC class II affect the severity of experimental myasthenia gravis.  Clin Immunol Immunopathol. 1998;  86 45-58
  • 71 Vincent A, Newsom-Davis J. Acetylcholine receptor antibody characteristics in myasthenia gravis. I. Patients with generalized myasthenia or disease restricted to ocular muscles.  Clin Exp Immunol. 1982;  49 257-265
  • 72 Limburg P C, The T C, Hummel-Teppel E, Oosterhuis H. Anti-acetylcholine receptor antibodies in myasthenia gravis. I. Relation to clinical parameters in 250 patients.  J Neurol Sci. 1983;  58 357-370
  • 73 Compston D AS, Vincent A, Newsom-Davis J, Batchelor J R. Clinical, pathological, HLA antigen, and immunological evidence for disease heterogeneity in myasthenia gravis.  Brain. 1980;  103 579-601
  • 74 Vincent A, Palace J, Hilton-Jones D. Myasthenia gravis.  Lancet. 2001;  357 2122-2128
  • 75 Yi Q, Lefvert A K. Idiotype- and anti-idiotype-reactive T lymphocytes in myasthenia gravis. Evidence for the involvement of different subpopulations of T helper lymphocytes.  J Immunol. 1994;  153 3353-3359
  • 76 Link J, Navikas V, Yu M, Fredrikson S, Osterman P O, Link H. Augmented interferon-gamma, interleukin-4 and transforming growth factor-beta mRNA expression in blood mononuclear cells in myasthenia gravis.  J Neuroimmunol. 1994;  51 185-192
  • 77 Hohlfeld R, Wekerle H. The thymus in myasthenia gravis.  Neurol Clin. 1994;  12 331-342
  • 78 Sommer N, Willcox N, Harcourt G C, Newsom-Davis J. Myasthenic thymus and thymoma are selectively enriched in acetylcholine receptor-reactive T cells.  Ann Neurol. 1990;  28 312-319
  • 79 Schonbeck S, Padberg F, Hohlfeld R, Wekerle H. Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice.  J Clin Invest. 1992;  90 245-250
  • 80 Zheng Y, Wheatley L M, Liu T, Levinson A I. Acetylcholine receptor alpha subunit mRNA expression in human thymus: augmented expression in myasthenia gravis and upregulation by interferon-gamma.  Clin Immunol. 1999;  91 170-177
  • 81 Kaminski H J, Fenstermaker R A, Abdul-Karim F W, Clayman J, Ruff R L. Acetylcholine receptor subunit gene expression in thymic tissue.  Muscle Nerve. 1993;  16 1332-1337
  • 82 Navaneetham D, Penn A S, Howard J FJ, Conti-Fine B M. Human thymuses express incomplete sets of muscle acetylcholine receptor subunit transcripts that seldom include the delta subunit.  Muscle Nerve. 2001;  24 203-210
  • 83 Gronseth G S, Barohn R J. Practice parameter: thymectomy for autoimmune myasthenia gravis (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology.  Neurology. 2000;  55 7-15
  • 84 Grob D, Arsura E L, Brunner N G, Namba T. The course of myasthenia gravis and therapies affecting outcome.  Ann N Y Acad Sci. 1987;  505 472-499
  • 85 Kaminski H J, Li Z, Richmonds C, Ruff R L, Kusner L. Susceptibility of ocular tissues to autoimmune diseases.  Ann N Y Acad Sci. 2003;  998 362-374
  • 86 Ubogu E E, Kaminski H J. Preferential involvement of extraocular muscle by myasthenia gravis.  Neuroophthalmology. 2001;  25 219-228
  • 87 Leigh R J, Zee D S. The Neurology of Eye Movements. Contemporary Neurology Series. Philadelphia; F.A. Davis 1999: 561
  • 88 Porter J D. Extraocular muscle: cellular adaptations for a diverse functional repertoire.  Ann N Y Acad Sci. 2002;  956 7-16
  • 89 Ruff R L. Na current density at and away from end plates on rat fast- and slow-twitch skeletal muscle fibers.  Am J Physiol. 1992;  262 C229-C234
  • 90 Ruff R L, Lennon V. End-plate voltage-gated sodium channels are lost in clinical and experimental myasthenia gravis.  Ann Neurol. 1998;  43 370-379
  • 91 Khanna S, Richmonds C, Kaminski H, Porter J. Molecular organization of the extraocular muscle neuromuscular junction: partial conservation of and divergence from skeletal muscle prototype.  Invest Ophthalmol Vis Sci. 2003;  44 1918-1926
  • 92 Wang Z, Diethelm-Okita B, Okita D, Kaminski H, Howard J, Conti-Fine B. T-cell recognition of muscle acetylcholine receptor in ocular myasthenia gravis.  J Neuroimmunol. 2000;  108 29-39
  • 93 Porter J D, Khanna S, Kaminski H J et al.. Extraocular muscle is defined by a fundamentally distinct gene expression profile.  Proc Natl Acad Sci USA. 2001;  98 12062-12067

Henry J KaminskiM.D. 

Department of Neurology, University Hospitals of Cleveland

11100 Euclid Avenue, Cleveland, OH 44106

    >