Abstract
An in situ generated Zn complex of salen ligand 4 was found to serve as an efficient catalyst for asymmetric addition reaction of an
alkynylzinc reagent to various ketones. For example, addition of phenylacetylene to
3,3-dimethyl-2-butanone using the Zn complex as catalyst showed enantioselectivity
as high as 91% ee.
Key words
Zn(salen) complex - asymmetric catalysis - asymmetric alkynylation - ketone - tertiary
propargylic alcohol
References
<A NAME="RU09504ST-1A">1a</A>
Soai K.
Niwa S.
Chem. Rev.
1992,
92:
833
<A NAME="RU09504ST-1B">1b</A>
Pu L.
Yu H.-B.
Chem. Rev.
2001,
101:
757
<A NAME="RU09504ST-1C">1c</A>
Pu L.
Tetrahedron
2003,
59:
9873
<A NAME="RU09504ST-2A">2a</A>
Frantz DE.
Fässler R.
Carreira EM.
J. Am. Chem. Soc.
2000,
122:
1806
<A NAME="RU09504ST-2B">2b</A>
Boyall D.
López F.
Sasaki H.
Frantz DE.
Carreira EM.
Org. Lett.
2000,
2:
4233
<A NAME="RU09504ST-2C">2c</A>
Frantz DE.
Fässler R.
Tomooka CS.
Carreira EM.
Acc. Chem. Soc.
2000,
33:
373
<A NAME="RU09504ST-2D">2d</A>
Bode JW.
Carreira EM.
J. Am Chem. Soc.
2001,
123:
3611
<A NAME="RU09504ST-2E">2e</A>
Anad NK.
Carreira EM.
J. Am. Chem. Soc.
2001,
123:
9687
<A NAME="RU09504ST-3A">3a</A>
Lu G.
Li X.
Chan WL.
Chan ASC.
Chem. Commun.
2002,
172
<A NAME="RU09504ST-3B">3b</A>
Li X.
Lu G.
Kwok WH.
Chan ASC.
J. Am. Chem. Soc.
2002,
124:
12636
<A NAME="RU09504ST-3C">3c</A>
Gao G.
Moore D.
Xie R.-G.
Pu L.
Org. Lett.
2002,
4:
4143
<A NAME="RU09504ST-3D">3d</A>
Xu M.-H.
Pu L.
Org. Lett.
2002,
4:
4555
<A NAME="RU09504ST-4">4</A>
Ramón DJ.
Yus M.
Angew. Chem. Int. Ed.
2004,
43:
284
For the highly enantioselective alkynylation of reactive ketone, see:
<A NAME="RU09504ST-5A">5a</A>
Jiang B.
Chen Z.
Tang X.
Org. Lett.
2002,
4:
3451
<A NAME="RU09504ST-5B">5b</A>
Tan L.
Chen C.
Tillyer RD.
Grabowski EJJ.
Reider PJ.
Angew. Chem. Int. Ed.
1999,
38:
711
<A NAME="RU09504ST-6">6</A>
Cozzi PG.
Angew. Chem. Int. Ed.
2003,
42:
2895
<A NAME="RU09504ST-7A">7a</A> For asymmetric diethylzinc addition using Zn(salen) complex as catalyst, see:
Cozzi PG.
Papa A.
Umani-Ronchi A.
Tetrahedron Lett.
1996,
37:
4613
<A NAME="RU09504ST-7B">7b</A> Also see:
DiMauro EF.
Kozlowski MC.
Org. Lett.
2001,
3:
3053
<A NAME="RU09504ST-7C">7c</A> For X-ray structure of Zr(salen) complex, see:
Morris GA.
Zhou H.
Stern CL.
Nguyen ST.
Inorg. Chem.
2001,
40:
3222
<A NAME="RU09504ST-8">8</A>
Lu G.
Li X.
Jia X.
Chan WL.
Chan ASC.
Angew. Chem. Int. Ed.
2003,
42:
5057
For asymmetric addition reactions of diaryl- or dialkylzinc to ketones, see:
<A NAME="RU09504ST-9A">9a</A>
Dosa PI.
Fu GC.
J. Am. Chem. Soc.
1998,
120:
445
<A NAME="RU09504ST-9B">9b</A>
Ramón DJ.
Yus M.
Tetrahedron
1998,
54:
5651
<A NAME="RU09504ST-9C">9c</A>
Garcia C.
LaRochelle LK.
Walsh PJ.
J. Am Chem. Soc.
2002,
124:
10970
<A NAME="RU09504ST-9D">9d</A>
DiMauro EF.
Kozlowski MC.
J. Am. Chem. Soc.
2002,
124:
12668
<A NAME="RU09504ST-9E">9e</A>
Funabashi K.
Jachmann M.
Kanai M.
Shibasaki M.
Angew. Chem. Int. Ed.
2003,
42:
5489
For recent reviews, see:
<A NAME="RU09504ST-10A">10a</A>
Katsuki T.
Synlett
2003,
281
<A NAME="RU09504ST-10B">10b</A>
Ito YN.
Katsuki T.
Bull. Chem. Soc. Jpn.
1999,
72:
603
<A NAME="RU09504ST-11">11</A>
Li Z.-B.
Pu L.
Org. Lett.
2004,
6:
1065
<A NAME="RU09504ST-12">12</A>
Zn(salen) complexes bearing a Lewis basic substituent at C3 and C3′ has been prepared
and used as the catalysts for addition of alkynylzinc to carbonyl compounds (ref.
[7b]
[9d]
).
<A NAME="RU09504ST-13">13</A>
Katsuki T.
Adv. Synth. Catal.
2002,
34:
131
References on metallosalens bearing a propylenediamine unit, see:
<A NAME="RU09504ST-14A">14a</A>
Kasahara R.
Tsuchimoto M.
Ohba S.
Nakajima K.
Ishida H.
Kojima M.
Inorg. Chem.
1996,
35:
7661
<A NAME="RU09504ST-14B">14b</A>
Bermejo MR.
Fondo M.
GarciDeibe A.
Rey M.
Sanmartin J.
Sousa A.
Watkinson M.
Polyhedron
1996,
15:
4185
<A NAME="RU09504ST-14C">14c</A>
van Bommel KJC.
Verboom W.
Kooijman H.
Spek AL.
Reinhoudt DN.
Inorg. Chem.
1998,
37:
4197
<A NAME="RU09504ST-14D">14d</A>
Tsuchimoto M.
Kasahara R.
Nakajima K.
Kojima M.
Ohba S.
Polyhedron
1999,
18:
3035
<A NAME="RU09504ST-15">15</A>
Typical experimental procedure is exemplified with the reaction of phenylacetylene
and 3,3-dimethyl-2-butanone using 4 as the chiral ligand: Dimethylzinc (2.0 M solution in toluene, 150 µL) and phenylacetylene
(32.9 µL, 0.3 mmol) were dissolved in a mixture of CH2Cl2 and toluene (300 µL/150 µL) under nitrogen atmosphere, and the solution was stirred
for 1 h at r.t. Then, ligand 4 was added to the mixture and stirred for another 1 h. To this mixture was added 3,3-dimethyl-2-butanone
(12.5 µL, 0.1 mmol) and the mixture was stirred for 2 d. The reaction mixture was
quenched by addition of water (2 drops), diluted with Et2O, and passed through a pad of Celite and Na2SO4. After removal of the solvent under reduced pressure, the residue was chromatographed
on silica gel (hexane-EtOAc = 19:1) to give the corresponding alcohol (15.2 mg, 75%).
The enantiomeric excess was determined to be 91% ee by HPLC analysis (Daicel Chiralcel
OD-H; hexane-i-PrOH = 49:1).
Enantiomeric excesses of the products were determined by HPLC analysis under the following
conditions:
<A NAME="RU09504ST-16A">16a</A>
Daicel Chiralcel OD-H, hexane-i-PrOH = 24:1.
<A NAME="RU09504ST-16B">16b</A>
Daicel Chiralcel OD-H, hexane-i-PrOH = 19:1.
<A NAME="RU09504ST-16C">16c</A>
Daicel Chiralpak AD-H, hexane-i-PrOH = 19:1.
<A NAME="RU09504ST-17">17</A>
Hashihayata T.
Punniyamurthy T.
Irie R.
Katsuki T.
Akita M.
Moro-oka Y.
Tetrahedron
1999,
55:
14599