Planta Med 2004; 70(7): 666-677
DOI: 10.1055/s-2004-827192
Original Paper
Analysis
© Georg Thieme Verlag KG Stuttgart · New York

Comparative Study on Triterpene Saponins of Ginseng Drugs

Shu Zhu1 , 3 , Kun Zou1 , 2 , Hirotoshi Fushimi1 , Shaoqing Cai3 , Katsuko Komatsu1
  • 1Research Center for Ethnomedicines, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, Toyama, Japan
  • 2Chemistry and Life Science College, Three Gorges University, Hubei, P. R. China
  • 3School of Pharmaceutical Sciences, Peking University, Beijing, P. R. China
This work was supported by a Grant-in-Aid for Scientific Research (B), No.11695086 in 1999 - 2001 and No.14406030 in 2002 - 2004 from Japan Society for the Promotion of Science, and by the 21st Century COE Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan
Further Information

Publication History

Received: January 14, 2004

Accepted: March 19, 2004

Publication Date:
15 July 2004 (online)

Abstract

A comparative study on the triterpene saponins of 47 samples of Ginseng drugs derived from 12 Panax taxa was conducted using a reverse-phase high-performance liquid chromatography (HPLC) method. Eleven ginsenosides, which represent 4 types of typical sapogenins, were chosen as standards for quantitative determination in order to characterize the chemical constituent pattern of each Ginseng drug and investigate the relationship between genetic varieties and chemical constituent pattern. The results showed that the ginsenoside compositions in Ginseng drugs of different origins were of considerable variability. Total saponin contents varied by 10-fold from the highest drug to the lowest one. Chikusetsu-ninjin derived from P. japonicus (Japan) was found to have the highest content (192.80 - 296.18 mg/g) and Ginseng from P. ginseng to be the lowest (5.78 - 15.63 mg/g). Two main groups (I and II) suggested by phytochemical data were clearly observed; group I mainly containing dammarane saponins consisted of P. ginseng, P. quinquefolius, P. notoginseng, P. vietnamensis and P. vietnamensis var. fuscidiscus; and group II containing a large amount of oleanolic acid saponins was composed of P. japonicus (Japan), P. zingiberensis, P. japonicus (China), P. japonicus var. angustifolius, P. japonicus var. major, P. japonicus var. bipinnatifidus and P. stipuleanatus. The ratios of the subtotal of dammarane saponins to that of oleanolic acid saponins (D/O) were found to be > 1.9 and < 0.25 for groups I and II, respectively. The drug samples derived from the same botanical origin revealed similar constituent patterns, in other words, each Panax taxon showed its own characteristic chromatographic profile, which appeared in the specific shape of an 11-direction radar graph constructed on the basis of the result of quantitative analysis. Similarities of chemical constitution were seen among the closely phylogenetically-related taxa, including P. ginseng and P. quinquefolius, P. vietnamensis and P. vietnamensis var. fuscidiscus, P. japonicus (China) and its varieties were demonstrated, except P. japonicus (Japan) and P. zingiberensis.

References

Dr. Katsuko Komatsu

Institute of Natural Medicine

Toyama Medical and Pharmaceutical University

2630 Sugitani

Toyama

930-0194 Toyama

Japan

Phone: +81-76-434-7645

Fax: +81-76-434-5064

Email: katsukok@ms.toyama-mpu.ac.jp