Abstract
Obesity has been described as the greatest current threat to human health. In order
to design drugs to target obesity, it is essential to understand its physiology and
pathophysiology. Several peptides synthesised in the gastrointestinal tract which
affect food intake have been identified including ghrelin, cholecystokinin (CCK),
glucagon-like peptide-1 (7 - 36) amide (GLP-1), oxyntomodulin, peptide YY (PYY) and
pancreatic polypeptide (PP). These peptides represent potential targets for the design
of anti-obesity drugs. In this article we review recent advances in our understanding
of food intake by these gastrointestinal hormones.
Key words
Ghrelin - Cholecystokinin (cck) - Glucagon-like peptide-1 (7 - 36) amide (glp-1) -
Oxyntomodulin - Peptide YY (pyy) - Pancreatic polypeptide (pp) - Obesity
References
- 1 Royal College of Physicians, Faculty of Public Health, Royal College of Paediatrics
and Child Health Report .Storing Up Problems: The medical case for a slimmer nation.
Report of a working party. London; 2004
- 2
Cone R D, Cowley M A, Butler A A, Fan W, Marks D L, Low M J.
The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis.
Int J Obes Relat Metab Disord.
2001;
25 Suppl 5
S63-S67
- 3
Wren A M, Small C J, Abbott C R, Dhillo W S, Seal L J, Cohen M A, Batterham R L, Taheri S,
Stanley S A, Ghatei M A, Bloom S R.
Ghrelin causes hyperphagia and obesity in rats.
Diabetes.
2001;
50
2540-2547
- 4
Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K.
Ghrelin is a growth-hormone-releasing acylated peptide from stomach.
Nature.
1999;
402
656-660
- 5
Petersenn S.
Structure and regulation of the growth hormone secretagogue receptor.
Minerva Endocrinol.
2002;
27
243-256
- 6
Tschop M, Smiley D L, Heiman M L.
Ghrelin induces adiposity in rodents.
Nature.
2000;
407
908-913
- 7
Ruter J, Kobelt P, Tebbe J J, Avsar Y, Veh R, Wang L, Klapp B F, Wiedenmann B, Tache Y,
Monnikes H.
Intraperitoneal injection of ghrelin induces Fos expression in the paraventricular
nucleus of the hypothalamus in rats.
Brain Res.
2003;
991
26-33
- 8
Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S.
A role for ghrelin in the central regulation of feeding.
Nature.
2001;
409
194-198
- 9
Chen H Y, Trumbauer M E, Chen A S, Weingarth D T, Adams J R, Frazier E G, Shen Z,
Marsh D J, Feighner S D, Guan X M, Ye Z, Nargund R P, Smith R G, Van der Ploeg L H,
Howard A D, MacNeil D J, Qian S.
Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related
protein.
Endocrinology.
2004;
145
2607-2612
- 10
Andersson U, Filipsson K, Abbott C R, Woods A, Smith K, Bloom S R, Carling D, Small C J.
AMP-activated protein kinase plays a role in the control of food intake.
J Biol Chem.
2004;
279
12 005-12 008
- 11
Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, Kangawa K, Nakazato M.
The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth
hormone secretion in rats.
Gastroenterology.
2002;
123
1120-1128
- 12
Sun Y, Ahmed S, Smith R G.
Deletion of ghrelin impairs neither growth nor appetite.
Mol Cell Biol.
2003;
23
7973-7981
- 13
Sun Y, Wang P, Zheng H, Smith R G.
Ghrelin stimulation of growth hormone release and appetite is mediated through the
growth hormone secretagogue receptor.
Proc Natl Acad Sci U S A.
2004;
101
4679-4684
- 14
Wortley K E, Anderson K D, Garcia K, Murray J D, Malinova L, Liu R, Moncrieffe M,
Thabet K, Cox H J, Yancopoulos G D, Wiegand S J, Sleeman M W.
Genetic deletion of ghrelin does not decrease food intake but influences metabolic
fuel preference.
Proc Natl Acad Sci U S A.
2004;
101
8227-8232
- 15
Tang-Christensen M, Vrang N, Ortmann S, Bidlingmaier M, Horvath T, Tschop M.
Central administration of Ghrelin and Agouti-related Protein (AGRP (83 - 132)) increases
food intake and decreases spontaneous locomotor activity in rats.
Endocrinology.
2004;
in press
- 16
Wren A M, Seal L J, Cohen M A, Brynes A E, Frost G S, Murphy K G, Dhillo W S, Ghatei M A,
Bloom S R.
Ghrelin enhances appetite and increases food intake in humans.
J Clin Endocrinol Metab.
2001;
86
5992
- 17
Neary N M, Small C J, Wren A M, Lee J L, Druce M R, Palmieri C, Frost G S, Ghatei M A,
Coombes R C, Bloom S R.
Ghrelin increases energy intake in cancer patients with impaired appetite: acute,
randomized, placebo-controlled trial.
J Clin Endocrinol Metab.
2004;
89
2832-2836
- 18
Cummings D E, Purnell J Q, Frayo R S, Schmidova K, Wisse B E, Weigle D S.
A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in
humans.
Diabetes.
2001;
50
1714-1719
- 19
Callahan H S, Cummings D E, Pepe M S, Breen P A, Matthys C C, Weigle D S.
Postprandial suppression of plasma ghrelin level is proportional to ingested caloric
load but does not predict intermeal interval in humans.
J Clin Endocrinol Metab.
2004;
89
1319-1324
- 20
Cummings D E, Weigle D S, Frayo R S, Breen P A, Ma M K, Dellinger E P, Purnell J Q.
Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery.
N Engl J Med.
2002;
346
1623-1630
- 21
Yildiz B O, Suchard M A, Wong M L, McCann S M, Licinio J.
Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human
obesity.
Proc Natl Acad Sci U S A.
2004;
in press
- 22
Gibbs J, Young R C, Smith G P.
Cholecystokinin decreases food intake in rats.
J Comp Physiol Psychol.
1973;
84
488-495
- 23
Kissileff H R, Pi-Sunyer F X, Thornton J, Smith G P.
C-terminal octapeptide of cholecystokinin decreases food intake in man.
Am J Clin Nutr.
1981;
34
154-160
- 24
Muurahainen N, Kissileff H R, Derogatis A J, Pi-Sunyer F X.
Effects of cholecystokinin-octapeptide (CCK-8) on food intake and gastric emptying
in man.
Physiol Behav.
1988;
44
645-649
- 25
Moran T H, Schwartz G J.
Neurobiology of cholecystokinin.
Crit Rev Neurobiol.
1994;
9
1-28
- 26
Smith G P, Jerome C, Cushin B J, Eterno R, Simansky K J.
Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat.
Science.
1981;
213
1036-1037
- 27
Wang L, Martinez V, Barrachina M D, Tache Y.
Fos expression in the brain induced by peripheral injection of CCK or leptin plus
CCK in fasted lean mice.
Brain Res.
1998;
791
157-166
- 28
Fan W, Boston B A, Kesterson R A, Hruby V J, Cone R D.
Role of melanocortinergic neurons in feeding and the agouti obesity syndrome.
Nature.
1997;
385
165-168
- 29
Fan W, Ellacott K L, Halatchev I G, Takahashi K, Yu P, Cone R D.
Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin
system.
Nat Neurosci.
2004;
7
335-336
- 30
Beglinger C, Degen L, Matzinger D, D’Amato M, Drewe J.
Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings
in humans.
Am J Physiol Regul Integr Comp Physiol.
2001;
280
R1149-R1154
- 31
Moran T H, Katz L F, Plata-Salaman C R, Schwartz G J.
Disordered food intake and obesity in rats lacking cholecystokinin A receptors.
Am J Physiol.
1998;
274
R618-R625
- 32
Kopin A S, Mathes W F, McBride E W, Nguyen M, Al-Haider W, Schmitz F, Bonner-Weir S,
Kanarek R, Beinborn M.
The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential
for the maintenance of body weight.
J Clin Invest.
1999;
103
383-391
- 33
West D B, Fey D, Woods S C.
Cholecystokinin persistently suppresses meal size but not food intake in free-feeding
rats.
Am J Physiol.
1984;
246
R776-R787
- 34
Crawley J N, Beinfeld M C.
Rapid development of tolerance to the behavioural actions of cholecystokinin.
Nature.
1983;
302
703-706
- 35
Leach S D, Modlin I M, Scheele G A, Gorelick F S.
Intracellular activation of digestive zymogens in rat pancreatic acini. Stimulation
by high doses of cholecystokinin.
J Clin Invest.
1991;
87
362-366
- 36
Andren-Sandberg A, Hoem D, Backman P L.
Other risk factors for pancreatic cancer: hormonal aspects.
Ann Oncol.
1999;
10 Suppl 4
131-135
- 37
Turton M D, O’Shea D, Gunn I, Beak S A, Edwards C M, Meeran K, Choi S J, Taylor G M,
Heath M M, Lambert P D, Wilding J P, Smith D M, Ghatei M A, Herbert J, Bloom S R.
A role for glucagon-like peptide-1 in the central regulation of feeding.
Nature.
1996;
379
69-72
- 38
Meeran K, O’Shea D, Edwards C M, Turton M D, Heath M M, Gunn I, Abusnana S, Rossi M,
Small C J, Goldstone A P, Taylor G M, Sunter D, Steere J, Choi S J, Ghatei M A, Bloom S R.
Repeated intracerebroventricular administration of glucagon-like peptide-1-(7-36)
amide or exendin-(9 - 39) alters body weight in the rat.
Endocrinology.
1999;
140
244-250
- 39
Verdich C, Flint A, Gutzwiller J P, Naslund E, Beglinger C, Hellstrom P M, Long S J,
Morgan L M, Holst J J, Astrup A.
A meta-analysis of the effect of glucagon-like peptide-1(7-36) amide on ad libitum
energy intake in humans.
J Clin Endocrinol Metab.
2001;
86
4382-4389
- 40
Verdich C, Toubro S, Buemann B, Lysgard M J, Juul H J, Astrup A.
The role of postprandial releases of insulin and incretin hormones in meal-induced
satiety-effect of obesity and weight reduction.
Int J Obes Relat Metab Disord.
2001;
25
1206-1214
- 41
Naslund E, King N, Mansten S, Adner N, Holst J J, Gutniak M, Hellstrom P M.
Prandial subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese
human subjects.
Br J Nutr.
2004;
91
439-446
- 42
Dakin C L, Small C J, Park A J, Seth A, Ghatei M A, Bloom S R.
Repeated ICV administration of oxyntomodulin causes a greater reduction in body weight
gain than in pair-fed rats.
Am J Physiol Endocrinol Metab.
2002;
283
E1173-E1177
- 43
Dakin C L, Small C J, Batterham R L, Neary N M, Cohen M A, Patterson M, Ghatei M A,
Bloom S R.
Peripheral oxyntomodulin reduces food intake and body weight gain in rats.
Endocrinology.
2004;
145
2687-2695
- 44
Tang-Christensen M, Vrang N, Larsen P J.
Glucagon-like peptide containing pathways in the regulation of feeding behaviour.
Int J Obes Relat Metab Disord.
2001;
25 Suppl 5
S42-S47
- 45
Fehmann H C, Jiang J, Schweinfurth J, Wheeler M B, Boyd A E, III , Goke B.
Stable expression of the rat GLP-I receptor in CHO cells: activation and binding characteristics
utilizing GLP-I(7-36)-amide, oxyntomodulin, exendin-4, and exendin(9 - 39).
Peptides.
1994;
15
453-456
- 46
Cohen M A, Ellis S M, Le R oux, Batterham R L, Park A, Patterson M, Frost G S, Ghatei M A,
Bloom S R.
Oxyntomodulin suppresses appetite and reduces food intake in humans.
J Clin Endocrinol Metab.
2003;
88
4696-4701
- 47
Ahren B, Simonsson E, Larsson H, Landin-Olsson M, Torgeirsson H, Jansson P A, Sandqvist M,
Bavenholm P, Efendic S, Eriksson J W, Dickinson S, Holmes D.
Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study
period in type 2 diabetes.
Diabetes Care.
2002;
25
869-875
- 48
Glover I, Haneef I, Pitts J, Wood S, Moss D, Tickle I, Blundell T.
Conformational flexibility in a small globular hormone: x-ray analysis of avian pancreatic
polypeptide at 0.98-A resolution.
Biopolymers.
1983;
22
293-304
- 49
Eberlein G A, Eysselein V E, Schaeffer M, Layer P, Grandt D, Goebell H, Niebel W,
Davis M, Lee T D, Shively J E.
A new molecular form of PYY: structural characterization of human PYY(3 - 36) and
PYY(1 - 36).
Peptides.
1989;
10
797-803
- 50
Larhammar D.
Structural diversity of receptors for neuropeptide Y, peptide YY and pancreatic polypeptide.
Regul Pept.
1996;
65
165-174
- 51
Adrian T E, Ferri G L, Bacarese-Hamilton A J, Fuessl H S, Polak J M, Bloom S R.
Human distribution and release of a putative new gut hormone, peptide YY.
Gastroenterology.
1985;
89
1070-1077
- 52
Lin H C, Chey W Y.
Cholecystokinin and peptide YY are released by fat in either proximal or distal small
intestine in dogs.
Regul Pept.
2003;
114
131-135
- 53
Pedersen-Bjergaard U, Host U, Kelbaek H, Schifter S, Rehfeld J F, Faber J, Christensen N J.
Influence of meal composition on postprandial peripheral plasma concentrations of
vasoactive peptides in man.
Scand J Clin Lab Invest.
1996;
56
497-503
- 54
Fu-Cheng X, Anini Y, Chariot J, Castex N, Galmiche J P, Roze C.
Mechanisms of peptide YY release induced by an intraduodenal meal in rats: neural
regulation by proximal gut.
Pflugers Arch.
1997;
433
571-579
- 55
Batterham R L, Cowley M A, Small C J, Herzog H, Cohen M A, Dakin C L, Wren A M, Brynes A E,
Low M J, Ghatei M A, Cone R D, Bloom S R.
Gut hormone PYY(3 - 36) physiologically inhibits food intake.
Nature.
2002;
418
650-654
- 56
Challis B G, Pinnock S B, Coll A P, Carter R N, Dickson S L, O’Rahilly S.
Acute effects of PYY3 - 36 on food intake and hypothalamic neuropeptide expression
in the mouse.
Biochem Biophys Res Commun.
2003;
311
915-919
- 57
Halatchev I G, Ellacott K L, Fan W, Cone R D.
Peptide YY3 - 36 inhibits food intake in mice through a melanocortin-4 receptor-independent
mechanism.
Endocrinology.
2004;
145
2585-2590
- 58
Challis B G, Coll A P, Yeo G S, Pinnock S B, Dickson S L, Thresher R R, Dixon J, Zahn D,
Rochford J J, White A, Oliver R L, Millington G, Aparicio S A, Colledge W H, Russ A P,
Carlton M B, O’Rahilly S.
Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally
to the acute anorectic effects of peptide-YY(3 - 36).
Proc Natl Acad Sci U S A.
2004;
101
4695-4700
- 59
Martin N M, Small C J, Sajedi A, Patterson M, Ghatei M A, Bloom S R.
Pre-obese and obese agouti mice are sensitive to the anorectic effects of peptide
YY(3 - 36) but resistant to ghrelin.
Int J Obes Relat Metab Disord.
2004;
28
886-893
- 60
Cox J E, Randich A.
Enhancement of feeding suppression by PYY(3 - 36) in rats with area postrema ablations.
Peptides.
2004;
25
985-989
- 61
Pittner R A, Moore C X, Bhavsar S P, Gedulin B R, Smith P A, Jodka C M, Parkes D G,
Paterniti J R, Srivastava V P, Young A A.
Effects of PYY 3-36 in rodent models of diabetes and obesity.
Int J Obes Relat Metab Disord.
2004;
in press
- 62
Tschop M, Castaneda T R, Joost H G, Thone-Reinke C, Ortmann S, Klaus S, Hagan M M,
Chandler P C, Oswald K D, Benoit S C, Seeley R J, Kinzig K P, Moran T H, Beck-Sickinger A G,
Koglin N, Rodgers R J, Blundell J E, Ishii Y, Beattie A H, Holch P, Allison D B, Raun K,
Madsen K, Wulff B S, Stidsen C E, Birringer M, Kreuzer O J, Schindler M, Arndt K,
Rudolf K, Mark M, Deng X Y, Whitcomb D C, Halem H, Taylor J, Dong J, Datta R, Culler M,
Craney S, Flora D, Smiley D, Heinman M L.
Physiology: does gut hormone PYY3 - 36 decrease food intake in rodents?.
Nature.
2004;
430 (6996)
1p
- 63
De S J, Butler A A, Cone R D.
Disproportionate inhibition of feeding in A(y) mice by certain stressors: a cautionary
note.
Neuroendocrinology.
2000;
72
126-132
- 64
Conrad C D, McEwen B S.
Acute stress increases neuropeptide Y mRNA within the arcuate nucleus and hilus of
the dentate gyrus.
Brain Res Mol Brain Res.
2000;
79
102-109
- 65
Makino S, Baker R A, Smith M A, Gold P W.
Differential regulation of neuropeptide Y mRNA expression in the arcuate nucleus and
locus coeruleus by stress and antidepressants.
J Neuroendocrinol.
2000;
12
387-395
- 66
Kanatani A, Mashiko S, Murai N, Sugimoto N, Ito J, Fukuroda T, Fukami T, Morin N,
MacNeil D J, Van der Ploeg L H, Saga Y, Nishimura S, Ihara M.
Role of the Y1 receptor in the regulation of neuropeptide Y-mediated feeding: comparison
of wild-type, Y1 receptor-deficient, and Y5 receptor-deficient mice.
Endocrinology.
2000;
141
1011-1016
- 67
Batterham R L, Cohen M A, Ellis S M, Le R oux, Withers D J, Frost G S, Ghatei M A,
Bloom S R.
Inhibition of food intake in obese subjects by peptide YY3 - 36.
N Engl J Med.
2003;
349
941-948
- 68
Asakawa A, Inui A, Yuzuriha H, Ueno N, Katsuura G, Fujimiya M, Fujino M A, Niijima A,
Meguid M M, Kasuga M.
Characterization of the effects of pancreatic polypeptide in the regulation of energy
balance.
Gastroenterology.
2003;
124
1325-1336
- 69
Ueno N, Inui A, Iwamoto M, Kaga T, Asakawa A, Okita M, Fujimiya M, Nakajima Y, Ohmoto Y,
Ohnaka M, Nakaya Y, Miyazaki J I, Kasuga M.
Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice.
Gastroenterology.
1999;
117
1427-1432
- 70
Whitcomb D C, Puccio A M, Vigna S R, Taylor I L, Hoffman G E.
Distribution of pancreatic polypeptide receptors in the rat brain.
Brain Res.
1997;
760
137-149
- 71
Clark J T, Kalra P S, Crowley W R, Kalra S P.
Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats.
Endocrinology.
1984;
115
427-429
- 72
Flynn M C, Turrin N P, Plata-Salaman C R, Ffrench-Mullen J M.
Feeding response to neuropeptide Y-related compounds in rats treated with Y5 receptor
antisense or sense phosphothio-oligodeoxynucleotide.
Physiol Behav.
1999;
66
881-884
- 73
Batterham R L, Le Roux C W, Cohen M A, Park A J, Ellis S M, Patterson M, Frost G S,
Ghatei M A, Bloom S R.
Pancreatic polypeptide reduces appetite and food intake in humans.
J Clin Endocrinol Metab.
2003;
88
3989-3992
- 74
Zipf W B, O’Dorisio T M, Cataland S, Sotos J.
Blunted pancreatic polypeptide responses in children with obesity of Prader-Willi
syndrome.
J Clin Endocrinol Metab.
1981;
52
1264-1266
- 75
Berntson G G, Zipf W B, O’Dorisio T M, Hoffman J A, Chance R E.
Pancreatic polypeptide infusions reduce food intake in Prader-Willi syndrome.
Peptides.
1993;
14
497-503
- 76 Neary N M, Small C J, Park A J, Ellis S M, Filipsson K, Wang F, Dakin C L, Ghatei M A,
Bloom S R. Gut hormones peptide YY3 - 36 and glucagon like peptide-1 have an additive
physiological role in the inhibition of food intake. Society for Neuroscience meeting,
USA 2003: Program No. 231.1
Prof. S. R. Bloom
Department of Metabolic Medicine, Imperial College Faculty of Medicine, Hammersmith
Hospital
6th Floor Commonwealth Building · Du Cane Road · London · W12 ONN · United Kingdom
·
Phone: + 44 (208) 383 3242
Fax: + 44 (208) 383 3142
Email: s.bloom@imperial.ac.uk