Radiologie up2date 2004; 4(3): 293-310
DOI: 10.1055/s-2004-825930
Gerätetechniken/Neuentwicklungen
© Georg Thieme Verlag Stuttgart · New York

Perfusions-MRT

Perfusion MRIS.  Heiland1, 2 , M.  Hartmann2
  • 1Sektion Experimentelle Neuroradiologie, Universitätsklinikum Heidelberg
  • 2Abteilung Neuroradiologie, Universitätsklinikum Heidelberg
Further Information

Publication History

Publication Date:
14 September 2004 (online)

Zusammenfassung

Die Perfusions-MRT hat sich in den vergangenen Jahren in der klinischen Routine etabliert. Sie ermöglicht es, Veränderungen des kapillären Netzwerks und des kapillären Blutflusses zu beurteilen. Daher ist diese Methode für viele neuroradiologische Fragestellungen interessant. In diesem Beitrag wird die Methodik ausführlich dargestellt, wobei dem Leser vor allem die Aspekte vermittelt werden sollen, die bei der praktischen Durchführung von Messung und Auswertung zu beachten sind. Im zweiten Teil werden die wesentlichen Anwendungsgebiete der Perfusions-MRT dargestellt und es wird beschrieben, wie sich die aus der Perfusions-MRT berechneten Parameter bei unterschiedlichen Erkrankungen verändern. Dabei werden auch Hinweise auf mögliche Fallstricke gegeben, die für Fehldiagnosen verantwortlich sein können.

Summary

Perfusion MRI has recently been established in clinical routine. It allows monitoring pathologic changes of the capillary network and the capillary blood flow. Therefore, perfusion MRI can help to improve the diagnosis in a variety of cerebral diseases. This paper describes the method, focussing on practical aspects that need to be considered when performing data acquisition and postprocessing. The second part of the paper presents the main areas of application and describes how different diseases change the parameters calculated from perfusion MRI. Pitfalls as potential source of a false diagnosis are discussed.

Literatur

  • 1 Axel L. Cerebal blood flow determination by rapid-sequence computed tomography.  Radiology. 1980;  137 679-686
  • 2 Fisel C R, Ackerman J L, Buxton R B, Garrido L, Belliveau J W, Rosen B R, Brady T J. MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology.  Magn Reson Med. 1991;  17 336-347
  • 3 Rosen B R, Belliveau J W, Vevea J M, Brady T J. Perfusion imaging with NMR contrast agents.  Magn Reson Med. 1990;  14 249-265
  • 4 Thompson H K, Starmer C F, Whalen R E, McIntosh H. Indicator transit time considered as a gamma variate.  Circ Res. 1964;  14 502-515
  • 5 Weisskoff R M, Chesler D, Boxerman J L, Rosen B R. Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time?.  Magn Reson Med. 1993;  29 553-558
  • 6 Ostergaard L, Sorensen A G, Kwong K K, Weisskoff R M, Gyldensted C, Rosen B R. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results.  Magn Reson Med. 1996;  36 726-736
  • 7 Ostergaard L, Weisskoff R M, Chesler D A, Gyldensted C, Rosen B R. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis.  Magn Reson Med. 1996;  36 715-725
  • 8 Schreiber W G, Gueckel F, Stritzke H, Schmiedek P, Schwartz A, Brix G. Cerebral blood flow and cerebrovascular reserve capacity: Estimation by dynamic magnetic resonance imaging.  J Cereb Blood Flow Metab. 1998;  18 1143-1156
  • 9 Miles K A. Measurements of tissue perfusion by dynamic computed tomography.  Br J Radiol. 1991;  64 409-412
  • 10 Calamante F, Gadian D G, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition.  Magn Reson Med. 2000;  44 466-473
  • 11 Lythgoe D J, Ostergaard L, William S C, Cluckie A, Buxton-Thomas M, Simmons A, Markus H S. Quantitative perfusion imaging in carotid artery stenosis using dynamic susceptibility contrast-enhanced magnetic resonance imaging.  Magn Reson Imaging. 2000;  18 1-11
  • 12 Boxerman J L, Hamberg L M, Rosen B R, Weisskoff R M. MR contrast due to intravascular magnetic susceptibility perturbations.  Magn Reson Med. 1995;  34 555-566
  • 13 van Osch M J, Vonken E J, Bakker C J, Viergever M A. Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI.  Magn Reson Med. 2001;  45 477-485
  • 14 Aronen H J, Gazit I E, Louis D N, Buchbinder B R, Pardo F S, Weisskoff R M, Harsh G R, Cosgrove G R, Halpern E F, Hochberg F H, Rosen B R. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings.  Radiology. 1994;  191 41-51
  • 15 Heiland S, Kreibich W, Reith W, Benner T, Dörfler A, Forsting M, Sartor K. Comparison of different EPI-sequence types in perfusion-weighted MR imaging: Which one is the best?.  Neuroradiology. 1998;  40 216-222
  • 16 Benner T, Heiland S, Erb G, Forsting M, Sartor K. Accuracy of gamma-variate fits to concentration-time curves from dynamic susceptibility-contrast enhanced MRI: influence of time resolution, maximal signal drop and signal-to-noise.  Magn Reson Imaging. 1997;  15 307-317
  • 17 Speck O, Chang L, DeSilva N M, Ernst T. Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient-echo versus spin-echo techniques.  J Magn Reson Imaging. 2000;  12 381-387
  • 18 Benner T, Reimer P, Erb G, Schuierer G, Heiland S, Fischer C, Geens V, Sartor K, Forsting M. Cerebral MR perfusion imaging: first clinical application of a 1 M gadolinium chelate (Gadovist 1.0) in a double-blinded randomized dose-finding study.  J Magn Reson Imaging. 2000;  12 371-380
  • 19 Heiland S, Sartor K. Magnetresonanztomographie beim Schlaganfall - methodische Grundlagen und klinische Anwendung.  RÖFO Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr. 1999;  171 3-14
  • 20 Tombach B, Benner T, Reimer P, Schuierer G, Fallenberg E M, Geens V, Wels T, Sorensen A G. Do highly concentrated gadolinium chelates improve MR brain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0.5 versus 1.0 mol/L gadobutrol.  Radiology. 2003;  226 880-888
  • 21 Berchtenbreiter C, Bruening R, Wu R H, Penzkofer H, Weber J, Reiser M. Comparison of the diagnostic information in relative cerebral blood volume, maximum concentration, and subtraction signal intensity maps based on magnetic resonance imaging of gliomas.  Invest Radiol. 1999;  34 75-81
  • 22 Teng M M, Cheng H C, Kao Y H, Hsu L C, Yeh T C, Hung C S, Wong W J, Hu H H, Chiang J H, Chang C Y. MR perfusion studies of brain for patients with unilateral carotid stenosis or occlusion: evaluation of maps of „time to peak” and „percentage of baseline at peak”.  J Comput Assist Tomogr. 2001;  25 121-125
  • 23 Heiland S, Reith W, Forsting M, Sartor K. How do concentration and dosage of the contrast agent affect the signal change in perfusion-weighted magnetic resonance imaging? A computer simulation.  Magn Reson Imaging. 2001;  19 813-820
  • 24 Schellinger P D, Fiebach J B, Jansen O, Ringleb P A, Mohr A, Steiner T, Heiland S, Schwab S, Pohlers O, Ryssel H, Orakcioglu B, Sartor K, Hacke W. Stroke magnetic resonance imaging within 6 hours after onset of hyperacute cerebral ischemia.  Ann Neurol. 2001;  49 460-469
  • 25 Baird A E, Benfield A, Schlaug G, Siewert B, Lovblad K O, Edelman R R, Warach S. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging.  Ann Neurol. 1997;  41 581-589
  • 26 Schellinger P D, Jansen O, Fiebach J B, Pohlers O, Ryssel H, Heiland S, Steiner T, Hacke W, Sartor K. Feasibility and practicality of MR imaging of stroke in the management of hyperacute cerebral ischemia.  AJNR Am J Neuroradiol. 2000;  21 1184-1189
  • 27 Jansen O, Knauth M, Sartor K. Advances in clinical neuroradiology.  Akt Neurologie. 1999;  26 1-7
  • 28 Marks M P, Tong D, Beaulieu C, Albers G W, de Crespigny A, Moseley M E. Evaluation of early reperfusion and IV rt-PA therapy using diffusion- and perfusion-weighted MRI.  Neurology. 1999;  52 1792-1798
  • 29 Tsuchida C, Yamada H, Maeda M, Sadato N, Matsuda T, Kawamura Y, Hayashi N, Yamamoto K, Yonekura Y, Ishii Y. Evaluation of peri-infarcted hypoperfusion with T2*-weighted dynamic MRI.  J Magn Reson Imaging. 1997;  7 518-522
  • 30 Kempski O, Behmanesh S. Endothelial cell swelling and brain perfusion.  J Trauma. 1997;  42 (Suppl) 38-40
  • 31 Reith W, Forsting M, Vogler H, Heiland S, Sartor K. Contrast enhanced MR for early detection of cerebral ischemia: An experimental study.  Am J Neuroradiol. 1995;  16 53-60
  • 32 Simonsen C Z, Ostergaard L, Smith D F, Vestergaard-Poulsen P, Gyldensted C. Comparison of gradient- and spin-echo imaging: CBF, CBV, and MTT measurements by bolus tracking.  J Magn Reson Imaging. 2000;  12 411-416
  • 33 Fiehler J, von Bezold M, Kucinski T, Knab R, Eckert B, Wittkugel O, Zeumer H, Rother J. Cerebral blood flow predicts lesion growth in acute stroke patients.  Stroke. 2002;  33 2421-2425
  • 34 Grandin C B, Duprez T P, Smith A M, Oppenheim C, Peeters A, Robert A R, Cosnard G. Usefulness of magnetic resonance-derived quantitative measurements of cerebral blood flow and volume in prediction of infarct growth in hyperacute stroke.  Stroke. 2001;  32 1147-1153
  • 35 Neumann-Haefelin T, Wittsack H J, Wenserski F, Siebler M, Seitz R J, Mödder U, Freund H J. Diffusion- and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke.  Stroke. 1999;  30 1591-1597
  • 36 Reith W, Heiland S, Erb G, Benner T, Forsting M, Sartor K. Dynamic contrast-enhanced T2*-weighted MRI in patients with cerebrovascular disease.  Neuroradiology. 1997;  39 250-257
  • 37 Dörfler A, Eckstein H H, Eichbaum M, Heiland S, Benner T, Allenberg J R, Forsting M. Perfusion-weighted magnetic resonance imaging in patients with carotid artery disease before and after carotid endarteriectomy.  J Vasc Surg. 2001;  34 587-593
  • 38 Fuss M, Wenz F, Essig M, Muenter M, Debus J, Herman T S, Wannenmacher M. Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy.  Int J Radiat Oncol Biol Phys. 2001;  51 478-482
  • 39 Hartmann M, Heiland S, Harting I, Tronnier V M, Sommer C, Ludwig R, Sartor K. Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging.  Neurosci Lett. 2003;  338 119-122
  • 40 Knopp E A, Cha S, Johnson G, Mazumdar A, Golfinos J G, Zagzag D, Miller D C, Kelly P J, Kricheff I I. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging.  Radiology. 1999;  211 791-798
  • 41 Law M, Cha S, Knopp E A, Johnson G, Arnett J, Litt A W. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging.  Radiology. 2002;  222 715-721
  • 42 Warach S, Levin J M, Schomer D L, Holman B L, Edelman R R. Hyperperfusion of ictal seizure focus demonstrated by MR perfusion imaging.  AJNR Am J Neuroradiol. 1994;  15 965-968
  • 43 Wenz F, Rempp K, Brix G, Knopp M V, Gückel F, Hess T, van Kaick G. Age dependency of the regional cerebral blood volume (rCBV) measured with dynamic susceptibility contrast MR imaging (DSC).  Magn Reson Imaging. 1996;  14 157-162
  • 44 Bozzao A, Floris R, Baviera M E, Apruzzese A, Simonetti G. Diffusion and perfusion MR imaging in cases of Alzheimer"s disease: correlations with cortical atrophy and lesion load.  AJNR Am J Neuroradiol. 2001;  22 1030-1036

Prof. Dr. rer. nat. Sabine Heiland

Sektion Experimentelle Neuroradiologie, Universitätsklinikum Heidelberg

Im Neuenheimer Feld 400 · 69120 Heidelberg

Phone: +49(0)6221 56-7566

Fax: +49(0)6221 56-4673

Email: sabine_heiland@med.uni-heidelberg.de

    >