Zusammenfassung
Hintergrund: Die Keramik Siliziumnitrit hat physikalische Eigenschaften, die einen medizinischen
Einsatz als Biomaterial für zahlreiche Indikationen wünschenswert erscheinen lassen.
Die Biokompatibilität des Werkstoffes ist jedoch bisher nicht ausreichend belegt.
Methoden: Wachstumsverhalten, Vitalität und Morphologie der Zelllinie L929-Mäusefibroblasten
wurden im modifizierten direct-contact-assay untersucht. Prüfmaterialien waren dabei
unbehandelte, geschliffene und polierte Siliziumnitrit-Scheiben. Als Vergleichsmaterial
diente Titan als Positivkontrolle und PVC als Negativkontrolle. Die Vitalität wurde
anhand einer Doppelfluoreszenzfärbung mit Bisbenzimid und Propidiumiodid am Inversionsfluoreszenz-Mikroskop
beurteilt, die Morphologie mit Hilfe rasterelektronenmikroskopischer Aufnahmen.
Ergebnisse: Nach 24-stündiger Kultur waren alle Zellen auf den Prüfmaterialien Siliziumnitrit
und Titan vital, nicht jedoch auf PVC. Die Wachstumszahlen auf Siliziumnitrit zeigten
keine signifikante Abweichung von denen auf Titan. Polierte Oberflächen erbrachten
höhere Wachstumszahlen als geschliffene und unbehandelte Oberflächen. Die rasterelektronenmikroskopische
Untersuchung der Zellen auf Titan und Siliziumnitrit zeigte breitflächige Anhaftung
mit typischer Fibroblasten-Morphologie und filiformen Zellausläufern.
Schlussfolgerung: Die vorliegenden In-vitro-Befunde geben keinen Hinweis auf zytotoxische Effekte der
untersuchten Siliziumnitrit-Keramik. Wachstum, Vitalität und Morphologie der Zellen
sind vergleichbar mit den entsprechenden Parametern für Titan als Vergleichsmaterial.
Polierte Oberflächen begünstigen das Zellwachstum. Weitergehende Biokompatibilitätsprüfungen
im Tierversuch sind notwendig vor Anwendung beim Menschen.
Abstract
Background: With regard to its favorable physical properties, silicon nitride ceramic is considered
as biomaterial for human medical application. Minor controversy exists about the biocompatibility
of the material.
Methods: Cytotoxicity testing, cell viability and morphology assessment was performed applying
the L929-mice fibroblast cell culture model in a direct contact assay. Testing materials
were silicon nitride ceramics of different surface properties and titanium alloy as
a reference. Polyvinylchloride served as a negative control. The cells were stained
with bisbenzimide and propidium iodine for double fluorochromasia viability testing,
and evaluated by inversion-fluorescence microscopy. Scanning electron microscopy was
applied to additionally investigate cell morphology.
Results: No cytotoxic effects were observed on the silicon nitride ceramic samples; moreover
cell morphology remained the same as on titanium. Avital cells were present exclusively
on PVC. The cell growth in the silicon nitride samples showed no significant differences
compared to titanium. Cell counts on all polished surfaces showed significantly higher
numbers. Scanning electron microscopy revealed typical fibroblast morphology with
filiform extensions.
Conclusion: The current results indicate a favorable biocompatibility of silicon nitride ceramic.
Cell growth, viability and morphology are comparable to parameters of titanium. Polished
surfaces appear to promote cell growth. Further in vivo studies are mandatory prior
to human medical application. Owing to its favorable physiochemical properties, especially
its superior resistance to mechanical stress, silicon nitride could serve as a biomaterial
for osteosynthesis of bone with mucosal attachment.
Schlüsselwörter
Siliziumnitrit-Keramik · Biokompatibilität · L929-Zellkultur
Key words
Silicon nitride · cytotoxicity · L929 cell line
Literatur
1
Marti A.
Inert bioceramics (Al2O3, ZrO2) for medical application.
Injury.
2000;
31 Suppl 4
33-36
2
Jahnke K, Plester D, Heimke G.
Aluminiumoxid-Keramik, ein bioinertes Material für die Mittelohchirurgie.
Arch Otorhinolaryngol.
1979;
223
373-376
3
Jahnke K, Plester D.
Keramik-Implantate in der Mittelohrchirurgie.
HNO.
1980;
28
109-114
4
Heimke G, Griss P.
Ceramic implant materials.
Med Biol Eng Comput.
1980;
18
503-510
5
Brunner F X.
Osteosyntheseplatten im Gesichtsbereich - ja oder nein?.
HNO.
1995;
43
205-208
6 Griss P, Werner E, Heimke J.
Alumina ceramic, bioglass, and silicon nitride: A comparative biocompatibility study. In: Hastings GW, Williams DF (Hrsg) Mechanical properties of biomaterials. New York;
John Wiley & Sons 1980: 217-226
7
Howlett C R, McCartney E, Ching W.
The effect of silicon nitride ceramic on rabbit skeletal cells and tissues.
Clin Orthop..
1989;
244
293-304
8
Neumann A, Reske T, Held M, Ragoß C, Maier H R, Jahnke K.
Comparative Investigation of the biocompatibility of various silicon nitride ceramic
qualities in vitro.
J Mat Sci: Mat Med.
2004;
35
569-573
9
Neumann A, Kramps M, Ragoß C, Maier H R, Jahnke K.
Histological and microradiographic appearances of Silicon Nitride and Aluminum Oxide
in a rabbit femur implantation model.
Mat Wiss Werstofftech.
2004;
35
569-573
10
Ammar A.
Tissue compatibility of different intracranial implant materials: In-vivo and in-vitro
studies.
Acta Neurochir.
1984;
72
45-59
11
Doran A, Law F, Allen M, Rushton N.
Neoplastic transformation of cells by soluble but not particulate forms of metals
used in orthopaedic implants.
Biomaterials.
1998;
19
751-759
12
Elbel J, Eckert L, Blum J, Wintermantel E, Eppenberger H.
Titanium dioxide ceramics control the differentiated phenotype of cardiac muscle cells
in culture.
Biomaterials.
2000;
21
539-550
13
Kawara H.
Cellular response to implant materials: Biological, physical and chemical factors.
Int Dent.
1983;
33
350-375
14
Mengucci P, Majini G, DeBenedittis A, Biagini G.
Study of the interface reaction between cells and a biocompatible ceramic.
Biomaterials.
1998;
17
1339-1344
15
Rosenbluth S A, Weddington G R, Guess W L, Autian J.
Tissue culture method for screening toxicity of plastic materials to be used in medical
practice.
J Pharm Sci.
1965;
54
156-159
16
Neumann A, Jahnke K.
Biomaterials for ossicular chain reconstruction. A review.
Mat Wiss Werkstofftech.
2003;
34
1052-1057
17
Richerson D W, Stephan P M.
Evolution of applications of Si3 N4 -based materials.
Mat Sci For.
1989;
47
282-307
18
Amaral M, Lopes M A, Silva R F, Santos J.
Densification route and mechanical properties of Si3 N4 -bioglass biocomposites.
Biomaterials.
2002;
23
857-862
19
Dion I, Bordenave L, Lefebre F, Bareille R, Baquey C, Monies J R, Havlik P.
Physico-chemistry and cytotoxicity of ceramics. Part II Cytotoxicity of ceramics.
J Mat Sci: Mat Med.
1994;
5
18-24
20
Kue R, Sohrabi A, Nagle D, Frondoza C, Hungerford D.
Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells
on silicon nitride ceramic discs.
Biomaterials.
1999;
20
1195-1201
21
Svensson I, Artursson E, Leanderson P, Berglind R, Lindgren F.
Toxicity in vitro of some silicone carbides and silicon nitrides: Whiskers and powders.
Am J Ind Med.
1997;
31
335-343
22
Chawla A S.
Toxicity evaluation of a novel filler free silicone rubber biomaterial by cell culture
techniques.
J Biomed Mat Res.
1982;
16
501-508
23
Johnson H J, Northup S J, Seagraves P A. et al .
Biocompatibility test procedures for materials evaluation in vitro. 1. Comparative
test system sensitivity.
J Biomed Mater Res.
1983;
17
571-586
24
Rice R M, Hegyeli A F, Gourlay S J. et al .
Biocompatibility testing of polymers: In vitro studies with in vivo correlation.
J Biomed Mater Res.
1978;
12
43-54
25 Northup S J.
Mammalian cell culture models. In: Handbook of Biomaterials Evaluation. Scientific, Technical, and Clinical Testing
of Implant Materials. New York; Macmillan Publishing Company 1988: 209-225
26 Wallin R F, Arscott E F. A practical guide to ISO 10993-5: Cytotoxicity. http://www.devicelink.com/mddi/archive/98/04/013.htm
27
Johnsson R I, Hegyeli A F.
Tissue culture techniques for screening of prosthetic materials.
Ann N Y Acad Sci.
1968;
146
66-76
28
Tas J, Westerneng G.
Fundamental aspects of the interaction of propidium diodide with nucleic acids studied
in a model system of polyacrylamide films.
J Histochem Cytochem.
1981;
29
929-936
29
Crissman H A, Steinkamp J A.
A new method for rapid and sensitive detection of bromodexyuridine in DNA-replicating
cells.
Exper Cell Res.
1987;
173
256-261
30
Latt S A, Stetten G.
Spectral studies on 33258 Hoechst and related bibenzimidazole dyes useful for fluorescent
detection of deoxyribonucleic acid synthesis.
J Histochem Cytochem.
1976;
24
24-33
31
Wilsnack R E, Meyer F J, Smith J G.
Human cell culture toxicity testing of medical devices and correlation to animal tests.
Biomat Med Dev Art Org.
1973;
1
543-562
32 Gross U, Schmitz H J, Kinne R, Fendler F R, Strunz V.
Tissue or cell culture versus in vivo testing of surface-reactive biomaterials. In: Pizzoferrato A, Marchetti PG, Raviglioli A, Lee AJC (Hrsg) Advances in Biomaterials
7: Biomaterials and clinical applications. Amsterdam; Elsevier 1987: 547-556
1 DFG Ja 205/9 - 1/2
Dr. med. Andreas Neumann
Universitäts-Hals-Nasen-Ohrenklinik
Hufelandstraße 55 · 45122 Essen ·
Email: andreas.neumann@uni-essen.de