Semin Thromb Hemost 2004; 30(2): 227-237
DOI: 10.1055/s-2004-825636
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Coagulation Factors with Improved Properties for Hemophilia Gene Therapy

Steven W. Pipe1
  • 1Assistant Professor, Pediatrics and Communicable Diseases, University of Michigan, Women's Hospital, Ann Arbor, Michigan
Further Information

Publication History

Publication Date:
07 May 2004 (online)

Hemophilias A and B are X-linked bleeding disorders that result in a qualitative or quantitative deficiency in coagulation factors VIII (FVIII) and IX (FIX), respectively. Affected patients experience significant morbidity as a result of repeated joint hemorrhages and subsequent arthropathy, and there is increased mortality related to life-threatening bleeding events. The mainstay of therapy is episodic or prophylactic infusions of plasma-derived or recombinant FVIII or FIX. However, gene transfer holds the promise of maintaining plasma levels of FVIII or FIX high enough to prevent the development of joint disease and reduce the risk of life-threatening bleeds or possibly even achieving normal plasma levels. Human gene therapy trials thus far have fallen short of this goal. This review summarizes the inherent limitations in expression of recombinant FVIII and the bioengineering strategies that are currently being explored for constructing novel recombinant FVIII molecules that have improved function. Current strategies for FVIII include increasing mRNA levels, improving secretion efficiency, increasing the rate of thrombin activation, stabilization of the activated form of FVIII, and strategies to prolong FVIII half-life in plasma by disrupting FVIII interaction with its clearance receptors. Strategies to improve the function of FIX include increasing the mRNA levels, reducing interaction with collagen IV, and increasing the specific activity. These novel molecules partnered with advances in gene transfer vector design and delivery may ultimately achieve persistent expression of FVIII and FIX, leading to an effective long-term treatment strategy for the hemophilias.

REFERENCES

  • 1 Rogoff E G, Guirguis H S, Lipton R A et al.. The upward spiral of drug costs: a time series analysis of drugs used in the treatment of hemophilia.  Thromb Haemost. 2002;  88 545-553
  • 2 Mitterer A, Mundt W, Bjornson E, Dorner F. Development of an advanced category recombinant FVIII, anti-hemophilic factor (recombinant) plasma/albumin-free method (rAHF-PFM).  J Thromb Haemost. 2003;  1 P1652 , (abst)
  • 3 Bohn R L, Avorn J, Glynn R J, Choodnovskiy I, Haschemeyer R, Aledort L M. Prophylactic use of factor VIII: an economic evaluation.  Thromb Haemost. 1998;  79 932-937
  • 4 Saenko E L, Ananyeva N M, Moayeri M, Ramezani A, Hawley R G. Development of improved factor VIII molecules and new gene transfer approaches for hemophilia A.  Curr Gene Ther. 2003;  3 27-41
  • 5 Saenko E L, Ananyeva N M, Shima M, Hauser C A, Pipe S W. The future of recombinant coagulation factors.  J Thromb Haemost. 2003;  1 922-930
  • 6 Bontempo F A, Lewis J H, Gorenc T J et al.. Liver transplantation in hemophilia A.  Blood. 1987;  69 1721-1724
  • 7 Kelly D A, Summerfield J A, Tuddenham E G. Localization of factor VIIIC: antigen in guinea-pig tissues and isolated liver cell fractions.  Br J Haematol. 1984;  56 535-543
  • 8 Zelechowska M G, van Mourik J A, Brodniewicz-Proba T. Ultrastructural localization of factor VIII procoagulant antigen in human liver hepatocytes.  Nature. 1985;  317 729-730
  • 9 Wion K L, Kelly D, Summerfield J A, Tuddenham E G, Lawn R M. Distribution of factor VIII mRNA and antigen in human liver and other tissues.  Nature. 1985;  317 726-729
  • 10 Do H, Healey J F, Waller E K, Lollar P. Expression of factor VIII by murine liver sinusoidal endothelial cells.  J Biol Chem. 1999;  274 19587-19592
  • 11 Foster P A, Fulcher C A, Marti T, Titani K, Zimmerman T S. A major factor VIII binding domain resides within the amino-terminal 272 amino acid residues of von Willebrand factor.  J Biol Chem. 1987;  262 8443-8446
  • 12 Saenko E L, Shima M, Rajalakshmi K J, Scandella D. A role for the C2 domain of factor VIII in binding to von Willebrand factor.  J Biol Chem. 1994;  269 11601-11605
  • 13 Foster P A, Fulcher C A, Houghten R A, Zimmerman T S. An immunogenic region within residues Val1670-Glu1684 of the factor VIII light chain induces antibodies which inhibit binding of factor VIII to von Willebrand factor.  J Biol Chem. 1988;  263 5230-5234
  • 14 Takahashi Y, Kalafatis M, Girma J P, Sewerin K, Andersson L O, Meyer D. Localization of a factor VIII binding domain on a 34 kilodalton fragment of the N-terminal portion of von Willebrand factor.  Blood. 1987;  70 1679-1682
  • 15 Galbusera M, Zoja C, Donadelli R et al.. Fluid shear stress modulates von Willebrand factor release from human vascular endothelium.  Blood. 1997;  90 1558-1564
  • 16 Schick P K, Walker J, Profeta B, Denisova L, Bennett V. Synthesis and secretion of von Willebrand factor and fibronectin in megakaryocytes at different phases of maturation.  Arterioscler Thromb Vasc Biol. 1997;  17 797-801
  • 17 Rosenberg J B, Foster P A, Kaufman R J et al.. Intracellular trafficking of factor VIII to von Willebrand factor storage granules.  J Clin Invest. 1998;  101 613-624
  • 18 Weiss H J, Sussman I I, Hoyer L W. Stabilization of factor VIII in plasma by the von Willebrand factor. Studies on posttransfusion and dissociated factor VIII and in patients with von Willebrand's disease.  J Clin Invest. 1977;  60 390-404
  • 19 Mannucci P M, Tenconi P M, Castaman G, Rodeghiero F. Comparison of four virus-inactivated plasma concentrates for treatment of severe von Willebrand disease: a cross-over randomized trial.  Blood. 1992;  79 3130-3137
  • 20 Roth D A, Tawa Jr N E, O'Brien J M, Treco D A, Selden R F. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A.  N Engl J Med. 2001;  344 1735-1742
  • 21 Kaufman R J, Pipe S W, Tagliavacca L, Swaroop M, Moussalli M. Biosynthesis, assembly and secretion of coagulation factor VIII.  Blood Coagul Fibrinolysis. 1997;  8(suppl 2) 3-14
  • 22 Soukharev S, Hammond D, Ananyeva N M et al.. Expression of factor VIII in recombinant and transgenic systems.  Blood Cells Mol Dis. 2002;  28 234-248
  • 23 Toole J J, Pittman D D, Orr E C, Murtha P, Wasley L C, Kaufman R J. A large region (approximately equal to 95 kDa) of human factor VIII is dispensable for in vitro procoagulant activity.  Proc Natl Acad Sci USA. 1986;  83 5939-5942
  • 24 Pittman D D, Alderman E M, Tomkinson K N, Wang J H, Giles A R, Kaufman R J. Biochemical, immunological, and in vivo functional characterization of B-domain-deleted factor VIII.  Blood. 1993;  81 2925-2935
  • 25 Sandberg H, Almstedt A, Brandt J et al.. Structural and functional characteristics of the B-domain-deleted recombinant factor VIII protein, r-VIII SQ.  Thromb Haemost. 2001;  85 93-100
  • 26 Courter S G, Bedrosian C L. Clinical evaluation of B-domain deleted recombinant factor VIII in previously treated patients.  Semin Hematol. 2001;  38 44-51
  • 27 Courter S G, Bedrosian C L. Clinical evaluation of B-domain deleted recombinant factor VIII in previously untreated patients.  Semin Hematol. 2001;  38 52-59
  • 28 Mannucci P M. Hemophilia: treatment options in the twenty-first century.  J Thromb Haemost. 2003;  1 1349-1355
  • 29 Kelley K, Verma I, Pierce G F. Gene therapy: reality or myth for the global bleeding disorders community?.  Haemophilia. 2002;  8 261-267
  • 30 Plantier J L, Rodriguez M H, Enjolras N, Attali O, Negrier C. A factor VIII minigene comprising the truncated intron I of factor IX highly improves the in vitro production of factor VIII.  Thromb Haemost. 2001;  86 596-603
  • 31 Enjolras N, Rodriguez M H, Plantier J L, Maurice M, Attali O, Negrier C. The three in-frame ATG, clustered in the translation initiation sequence of human factor IX gene, are required for an optimal protein production.  Thromb Haemost. 1999;  82 1264-1269
  • 32 Kurachi S, Hitomi Y, Furukawa M, Kurachi K. Role of intron I in expression of the human factor IX gene.  J Biol Chem. 1995;  270 5276-5281
  • 33 Hoeben R C, Fallaux F J, Cramer S J et al.. Expression of the blood-clotting factor-VIII cDNA is repressed by a transcriptional silencer located in its coding region.  Blood. 1995;  85 2447-2454
  • 34 Dorner A J, Wasley L C, Kaufman R J. Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells.  J Biol Chem. 1989;  264 20602-20607
  • 35 Dorner A J, Wasley L C, Kaufman R J. Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells.  EMBO J. 1992;  11 1563-1571
  • 36 Dorner A J, Wasley L C, Kaufman R J. Protein dissociation from GRP78 and secretion are blocked by depletion of cellular ATP levels.  Proc Natl Acad Sci USA. 1990;  87 7429-7432
  • 37 Tagliavacca L, Wang Q, Kaufman R J. ATP-dependent dissociation of non-disulfide-linked aggregates of coagulation factor VIII is a rate-limiting step for secretion.  Biochemistry. 2000;  39 1973-1981
  • 38 Marquette K A, Pittman D D, Kaufman R J. A 110-amino acid region within the A1-domain of coagulation factor VIII inhibits secretion from mammalian cells.  J Biol Chem. 1995;  270 10297-10303
  • 39 Swaroop M, Moussalli M, Pipe S W, Kaufman R J. Mutagenesis of a potential immunoglobulin-binding protein-binding site enhances secretion of coagulation factor VIII.  J Biol Chem. 1997;  272 24121-24124
  • 40 Pittman D D, Marquette K A, Kaufman R J. Role of the B domain for factor VIII and factor V expression and function.  Blood. 1994;  84 4214-4225
  • 41 Oeri J, Matter M, Isenschmid H, Hauser F, Koller F. Angeborener Mangel an Faktor V (Parahaemophilie) verbunden mit echter Haemophilie A bei zwei Brüdern.  Med Probl Paediatr. 1954;  1 575
  • 42 Nichols W C, Seligsohn U, Zivelin A et al.. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII.  Cell. 1998;  93 61-70
  • 43 Nichols W C, Terry V H, Wheatley M A et al.. ERGIC-53 gene structure and mutation analysis in 19 combined factors V and VIII deficiency families.  Blood. 1999;  93 2261-2266
  • 44 Zhang B, Cunningham M A, Nichols W C et al.. Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex.  Nat Genet. 2003;  34 220-225
  • 45 Herrmann J M, Malkus P, Schekman R. Out of the ER-outfitters, escorts and guides.  Trends Cell Biol. 1999;  9 5-7
  • 46 Kappeler F, Klopfenstein D R, Foguet M, Paccaud J P, Hauri H P. The recycling of ERGIC-53 in the early secretory pathway. ERGIC-53 carries a cytosolic endoplasmic reticulum-exit determinant interacting with COPII.  J Biol Chem. 1997;  272 31801-31808
  • 47 Scales S J, Pepperkok R, Kreis T E. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI.  Cell. 1997;  90 1137-1148
  • 48 Campbell J L, Schekman R. Selective packaging of cargo molecules into endoplasmic reticulum-derived COPII vesicles.  Proc Natl Acad Sci USA. 1997;  94 837-842
  • 49 Vollenweider F, Kappeler F, Itin C, Hauri H P. Mistargeting of the lectin ERGIC-53 to the endoplasmic reticulum of HeLa cells impairs the secretion of a lysosomal enzyme.  J Cell Biol. 1998;  142 377-389
  • 50 Moussalli M, Pipe S W, Hauri H P, Nichols W C, Ginsburg D, Kaufman R J. Mannose-dependent endoplasmic reticulum (ER)-Golgi intermediate compartment-53-mediated ER to Golgi trafficking of coagulation factors V and VIII.  J Biol Chem. 1999;  274 32539-32542
  • 51 Pipe S W, Miao H Z, Tendulkar R, Kaufman R J. Asparagine-linked glycosylation sites within the B domain of coagulation factor VIII improve secretion efficiency.  Blood. 2001;  98 705a , (abst)
  • 52 Pipe S W, Miao H Z, Sirachainan N, Cunningham M A, Kaufman R J. Genetic modifications that increase factor VIII secretion in vitro and in vivo .  J Thromb Haemost. 2003;  1 OC091 , (abst)
  • 53 Doering C B, Healey J F, Parker E T, Barrow R T, Lollar P. High level expression of recombinant porcine coagulation factor VIII.  J Biol Chem. 2002;  277 38345-38349
  • 54 van Dieijen G, Tans G, Rosing J, Hemker H C. The role of phospholipid and factor VIIIa in the activation of bovine factor X.  J Biol Chem. 1981;  256 3433-3442
  • 55 Voorberg J, van Stempvoort G, Bos J M, Mertens K, van Mourik J A, Donath M J. Enhanced thrombin sensitivity of a factor VIII-heparin cofactor II hybrid.  J Biol Chem. 1996;  271 20985-20988
  • 56 Hultin M B, Jesty J. The activation and inactivation of human factor VIII by thrombin: effect of inhibitors of thrombin.  Blood. 1981;  57 476-482
  • 57 Lollar P, Parker C G. pH-dependent denaturation of thrombin-activated porcine factor VIII.  J Biol Chem. 1990;  265 1688-1692
  • 58 Pipe S W, Eickhorst A N, McKinley S H, Saenko E L, Kaufman R J. Mild hemophilia A caused by increased rate of factor VIII A2 subunit dissociation: evidence for nonproteolytic inactivation of factor VIIIa in vivo.  Blood. 1999;  93 176-183
  • 59 Pipe S W, Saenko E L, Eickhorst A N, Kemball-Cook G, Kaufman R J. Hemophilia A mutations associated with 1-stage/2-stage activity discrepancy disrupt protein-protein interactions within the triplicated A domains of thrombin-activated factor VIIIa.  Blood. 2001;  97 685-691
  • 60 Hakeos W H, Miao H, Sirachainan N et al.. Hemophilia A mutations within the factor VIII A2-A3 subunit interface destabilize factor VIIIa and cause one-stage/two-stage activity discrepancy.  Thromb Haemost. 2002;  88 781-787
  • 61 Amano K, Michnick D A, Moussalli M, Kaufman R J. Mutation at either Arg336 or Arg562 in factor VIII is insufficient for complete resistance to activated protein C (APC)-mediated inactivation: implications for the APC resistance test.  Thromb Haemost. 1998;  79 557-563
  • 62 Pipe S W, Kaufman R J. Characterization of a genetically engineered inactivation-resistant coagulation factor VIIIa.  Proc Natl Acad Sci USA. 1997;  94 11851-11856
  • 63 Gale A J, Pellequer J L, Griffin J H. A novel engineered interdomain disulfide bond stabilizes human blood coagulation factor VIIIa.  J Thromb Haemost. 2003;  1 OC094 , (abst)
  • 64 Pemberton S, Lindley P, Zaitsev V, Card G, Tuddenham E G, Kemball-Cook G. A molecular model for the triplicated A domains of human factor VIII based on the crystal structure of human ceruloplasmin.  Blood. 1997;  89 2413-2421
  • 65 Gale A J, Xu X, Pellequer J L, Getzoff E D, Griffin J H. Interdomain engineered disulfide bond permitting elucidation of mechanisms of inactivation of coagulation factor Va by activated protein C.  Protein Sci. 2002;  11 2091-2101
  • 66 Lenting P J, Neels J G, van den Berg B M et al.. The light chain of factor VIII comprises a binding site for low density lipoprotein receptor-related protein.  J Biol Chem. 1999;  274 23734-23739
  • 67 Saenko E L, Yakhyaev A V, Mikhailenko I, Strickland D K, Sarafanov A G. Role of the low density lipoprotein-related protein receptor in mediation of factor VIII catabolism.  J Biol Chem. 1999;  274 37685-37692
  • 68 Schwarz H P, Lenting P J, Binder B et al.. Involvement of low-density lipoprotein receptor-related protein (LRP) in the clearance of factor VIII in von Willebrand factor-deficient mice.  Blood. 2000;  95 1703-1708
  • 69 Neels J G, van den Berg B M, Mertens K et al.. Activation of factor IX zymogen results in exposure of a binding site for low-density lipoprotein receptor-related protein.  Blood. 2000;  96 3459-3465
  • 70 Narita M, Rudolph A E, Miletich J P, Schwartz A L. The low-density lipoprotein receptor-related protein (LRP) mediates clearance of coagulation factor Xa in vivo.  Blood. 1998;  91 555-560
  • 71 Kounnas M Z, Church F C, Argraves W S, Strickland D K. Cellular internalization and degradation of antithrombin III-thrombin, heparin cofactor II-thrombin, and alpha 1-antitrypsin-trypsin complexes is mediated by the low density lipoprotein receptor-related protein.  J Biol Chem. 1996;  271 6523-6529
  • 72 Warshawsky I, Broze Jr G J, Schwartz A L. The low density lipoprotein receptor-related protein mediates the cellular degradation of tissue factor pathway inhibitor.  Proc Natl Acad Sci USA. 1994;  91 6664-6668
  • 73 Turecek P L, Schwarz H P, Binder B R. In vivo inhibition of low density lipoprotein receptor-related protein improves survival of factor VIII in the absence of von Willebrand factor.  Blood. 2000;  95 3637-3638
  • 74 Ananyeva N M, Kouiavskaia D V, Shima M, Saenko E L. Catabolism of the coagulation factor VIII: can we prolong lifetime of fVIII in circulation?.  Trends Cardiovasc Med. 2001;  11 251-257
  • 75 Sarafanov A G, Ananyeva N M, Shima M, Saenko E L. Cell surface heparan sulfate proteoglycans participate in factor VIII catabolism mediated by low density lipoprotein receptor-related protein.  J Biol Chem. 2001;  276 11970-11979
  • 76 Tuddenham E GD, Lane R S, Rotblat F et al.. Response to infusions of polyelectrolyte fractionated human factor VIII concentrate in human hemophilia A and von Willebrand's disease.  Br J Haematol. 1982;  52 259-267
  • 77 Lethagen S, Berntorp E, Nilsson I M. Pharmacokinetics and hemostatic effect of different factor VIII/von Willebrand factor concentrates in von Willebrand's disease type III.  Ann Hematol. 1992;  65 253-259
  • 78 Over J, Sixma J J, Bruine M H et al.. Survival of 125 iodine-labeled factor VIII in normals and patients with classic hemophilia. Observations on the heterogeneity of human factor VIII.  J Clin Invest. 1978;  62 223-234
  • 79 Neels J G, Bovenschen N, van Zonneveld A J, Lenting P J. Interaction between factor VIII and LDL receptor-related protein. Modulation of coagulation?.  Trends Cardiovasc Med. 2000;  10 8-14
  • 80 Stoilova-McPhie S, Villoutreix B O, Mertens K, Kemball-Cook G, Holzenburg A. 3-Dimensional structure of membrane-bound coagulation factor VIII: modeling of the factor VIII heterodimer within a 3-dimensional density map derived by electron crystallography.  Blood. 2002;  99 1215-1223
  • 81 Rodenburg K W, Kjoller L, Petersen H H, Andreasen P A. Binding of urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex to the endocytosis receptors alpha2-macroglobulin receptor/low-density lipoprotein receptor-related protein and very-low-density lipoprotein receptor involves basic residues in the inhibitor.  Biochem J. 1998;  329 55-63
  • 82 Howard G C, Yamaguchi Y, Misra U K et al.. Selective mutations in cloned and expressed alpha-macroglobulin receptor binding fragment alter binding to either the alpha2-macroglobulin signaling receptor or the low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor.  J Biol Chem. 1996;  271 14105-14111
  • 83 Knauer M F, Kridel S J, Hawley S B, Knauer D J. The efficient catabolism of thrombin-protease nexin 1 complexes is a synergistic mechanism that requires both the LDL receptor-related protein and cell surface heparins.  J Biol Chem. 1997;  272 29039-29045
  • 84 Bovenschen N, Herz J, Grimbergen J M et al.. Elevated plasma factor VIII in a mouse model of low-density lipoprotein receptor-related protein deficiency.  Blood. 2003;  101 3933-3939
  • 85 Yoshitake S, Schach B G, Foster D C, Davie E W, Kurachi K. Nucleotide sequence of the gene for human factor IX (antihemophilic factor B).  Biochemistry. 1985;  24 3736-3750
  • 86 Kaufman R J, Wasley L C, Furie B C, Furie B, Shoemaker C B. Expression, purification, and characterization of recombinant g-carboxylated factor IX synthesized in Chinese hamster ovary cells.  J Biol Chem. 1986;  261 9622-9628
  • 87 Suttie J W. Synthesis of vitamin K-dependent proteins.  FASEB J. 1993;  7 445-452
  • 88 Kurachi K, Davie E W. Isolation and characterization of a cDNA coding for human factor IX.  Proc Natl Acad Sci USA. 1982;  79 6461-6464
  • 89 Bond M, Jankowski M, Patel H et al.. Biochemical characterization of recombinant factor IX.  Semin Hematol. 1998;  35 11-17
  • 90 Zheng B, Qiu X Y, Tan M et al.. Increment of hFIX expression with endogenous intron 1 in vitro.  Cell Res. 1997;  7 21-29
  • 91 Rodriguez M H, Enjolras N, Plantier J L et al.. Expression of coagulation factor IX in a haematopoietic cell line.  Thromb Haemost. 2002;  87 366-373
  • 92 Schuettrumpf J, Herzog R W, Kaufhold A, Stafford D W, High K A, Arruda V R. Improving efficacy of gene therapy of hemophilia B by the use of mutant FIX variants.  J Thromb Haemost. 2003;  1 , OC044 (abst)
  • 93 Chang J, Jin J, Lollar P et al.. Changing residue 338 in human factor IX from arginine to alanine causes an increase in catalytic activity.  J Biol Chem. 1998;  273 12089-12094
  • 94 Hopfner K P, Brandstetter H, Karcher A et al.. Converting blood coagulation factor IXa into factor Xa: dramatic increase in amidolytic activity identifies important active site determinants.  EMBO J. 1997;  16 6626-6635
  • 95 Koster T, Blann A D, Briet E, Vandenbroucke J P, Rosendaal F R. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis.  Lancet. 1995;  345 152-155
  • 96 Kraaijenhagen R A, in't Anker P S, Koopman M M et al.. High plasma concentration of factor VIIIc is a major risk factor for venous thromboembolism.  Thromb Haemost. 2000;  83 5-9
  • 97 O'Donnell J, Tuddenham E G, Manning R, Kemball-Cook G, Johnson D, Laffan M. High prevalence of elevated factor VIII levels in patients referred for thrombophilia screening: role of increased synthesis and relationship to the acute phase reaction.  Thromb Haemost. 1997;  77 825-828
  • 98 Penick G D, Dejanov I I, Roberts H R, Webster W P. Elevation of factor 8 in hypercoagulable states.  Thromb Diath Haemorrh. 1966;  20(suppl) 39-48
  • 99 Meade T W, Cooper J A, Stirling Y, Howarth D J, Ruddock V, Miller G J. Factor VIII, ABO blood group and the incidence of ischaemic heart disease.  Br J Haematol. 1994;  88 601-607
  • 100 Rosendaal F R, Varekamp I, Smit C et al.. Mortality and causes of death in Dutch haemophiliacs, 1973-86.  Br J Haematol. 1989;  71 71-76
  • 101 van Hylckama Vlieg A, van der Linden I K, Bertina R M, Rosendaal F R. High levels of factor IX increase the risk of venous thrombosis.  Blood. 2000;  95 3678-3682
  • 102 Ton-That T T, Doron D, Pollard B S, Bacher J, Pollard H B. In vivo bypass of hemophilia A coagulation defect by factor XIIa implant.  Nat Biotechnol. 2000;  18 289-295
  • 103 Roberts H R. Recombinant factor VIIa (Novoseven) and the safety of treatment.  Semin Hematol. 2001;  38 48-50
  • 104 Hrachovinova I, Cambien B, Hafezi-Moghadam A et al.. Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A.  Nat Med. 2003;  9 1020-1025

Steven W PipeM.D. 

Pediatrics and Communicable Diseases, University of Michigan

L2110 Women's Hospital, 1500 E. Medical Center Drive

Ann Arbor, MI 48109-0238

Email: ummdswp@med.umich.edu

    >