Semin Liver Dis 2004; 24(1): 43-48
DOI: 10.1055/s-2004-823100
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Canals of Hering: Recent Insights and Current Knowledge

Romil Saxena1 , Neil Theise2
  • 1Assistant Professor, Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana
  • 2Division of Digestive Diseases, Beth Israel Medical Center, New York, New York
Further Information

Publication History

Publication Date:
13 April 2004 (online)

The canals of Hering (CoH) begin in the lobules, are lined partially by cholangiocytes and partly by hepatocytes, and conduct bile from bile canaliculi to terminal bile ducts in portal tracts. They are not readily apparent on routine histological staining but are highlighted by the biliary cytokeratins CK19 and CK7. There is on average 1 CoH per 10 μm of bile duct length. The canals represent the true hepatocytic-biliary interface that thus lies within the lobule and not at the limiting plate. The CoH are destroyed early in primary biliary cirrhosis, perhaps explaining lobular “hepatitis” in this disease. They may also be the primary sites of scarring in methotrexate toxicity. Most intriguingly, the CoH have been speculated to harbor intraorgan stem cells of the liver, perhaps forming the hepatic stem cell “niche” and have been demonstrated to proliferate in disease states.


  • 1 Hering E. Uber den Bau der Wirbelthierleber.  Archiv fur mikroskopische Anatomie. 1867;  3 88-118
  • 2 Gillispie C C. Dictionary of Scientific Biography. New York; Charles Scribner & Sons 1981: 299-301
  • 3 Gurlt E, Hirsch A. Biographisches Lexikon der Hervorragenden Aerzte. Vienna; Urban & Schwarzenberg 1886
  • 4 Crawford A R, Lin X Z, Crawford J M. The normal adult human liver biopsy: a quantitative reference standard.  Hepatology. 1998;  28 323-331
  • 5 Haque S, Haruna Y, Saito K et al.. Identification of bipotential progenitor cells in human liver regeneration.  Lab Invest. 1996;  75 699-705
  • 6 Theise N D, Saxena R, Portmann B C et al.. The canals of Hering and hepatic stem cells in humans.  Hepatology. 1999;  30 1425-1433
  • 7 Saxena R, Theise N D, Crawford J M. Microanatomy of the human liver-exploring the hidden interfaces.  Hepatology. 1999;  30 1339-1346
  • 8 Steiner J W, Carruthers J S. Studies on the fine structure of the terminal branches of the biliary tree.  Am J Pathol. 1961;  38 639-661
  • 9 Ekataksin W, Zou Z Z, Wake K et al.. The hepatic microcirculatory subunits: an over-three-century-long search for the missing link between an exocrine unit and an endocrine unit in mammalian liver lobules. In: Motta PM Recent Advances in Microscopy of Cells, Tissues and Organs. Rome; University of Rome La Sapienza Press 1997: 375-380
  • 10 Matsumoto T, Komori R, Magara T et al.. A study of the normal structure of the human liver, with special reference to its angioarchitecture.  Jikeikai Med J. 1979;  26 1-40
  • 11 Ekataksin W, Wake K. New concepts in biliary and vascular anatomy of the liver.  Prog Liv Dis. 1997;  15 1-30
  • 12 Ishii K, Phillips M J. In vivo contraction of the duct of Hering.  Hepatology. 1995;  22 159A
  • 13 Cassiman D, Libbrecht L, Sinelli N et al.. The vagal nerve stimulates activation of the hepatic progenitor cell compartment via muscarinic acetylcholine receptor type 3.  Am J Pathol. 2002;  161 521-530
  • 14 Saxena R, Hytiroglou P, Thung S N, Theise N D. Destruction of canals of Hering in primary biliary cirrhosis.  Hum Pathol. 2002;  33 983-988
  • 15 Cymes K, Saxena R, Theise N D. Lobular “hepatitis” in primary biliary cirrhosis (PBC).  Mod Pathol. 2001;  14 194A
  • 16 Hytiroglou P, Tobias H, Saxena R et al.. The canals of Hering may represent a target of methotrexate hepatic toxicity.  Am J Clin Pathol. 2004;  , (in press)
  • 17 Haruna Y, Saito K, Spaulding S et al.. Identification of bipotential progenitor cells in human liver development.  Hepatology. 1996;  23 476-481
  • 18 Roskams T, De Vos R, Van Eyken P et al.. Hepatic OV-6 expression in human liver disease and rat experiments: evidence for hepatic progenitor cells in man.  J Hepatol. 1998;  29 455-463
  • 19 Crosby H A, Hubscher S, Fabris L et al.. Immunolocalization of putative human liver progenitor cells in livers from patients with end-stage primary biliary cirrhosis and sclerosing cholangitis using the monoclonal antibody OV-6.  Am J Pathol. 1998;  152 771-779
  • 20 Fujio K, Hu Z, Evarts R P et al.. Co-expression of stem cell factor and c-kit in embryonic and adult liver.  Exp Cell Res. 1996;  224 243-250
  • 21 Cassiman D, Denef C, Desmet V, Roskams T. Human and rat hepatic stellate cells express neurotropins and neurotrophin receptors.  Hepatology. 2001;  33 148-158
  • 22 Roskams T, Campos R V, Drucker D J, Desmet V J. Reactive human bile ductules express parathyroid hormone-related peptide.  Histopathology. 1993;  23 11-19
  • 23 Van den Heuvel M C, Slooff M J, Visser L et al.. Expression of anti-OV6 antibody and anti-N-CAM antibody along the biliary line of normal and diseased human livers.  Hepatology. 2001;  33 1387-1393
  • 24 Van den Heuvel M C, de Jong K P, van der Horst M C et al.. Impaired regeneration of biliary cells in human chronic liver allograft rejection. Special emphasis on the role of the finest branches of the biliary tree.  Liver Transplantation. 2004;  , (In press)
  • 25 Oben J A, Roskams T, Yang S et al.. Sympathetic nervous system inhibition increases hepatic progenitors and reduces liver injury.  Hepatology. 2003;  38 664-673

Romil SaxenaM.D. F.R.C.Path 

Department of Pathology, University Hospital UH 3465

550 North University Boulevard, Indianapolis, IN 46202