Semin Hear 2004; 25(1): 39-49
DOI: 10.1055/s-2004-823046
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Electrophysiological Evidence for Binaural Processing in Auditory Evoked Potentials: The Binaural Interaction Component

Cynthia G. Fowler1
  • 1Professor, Department of Communicative Disorders, University of Wisconsin-Madison, Madison, Wisconsin
Tribute to Tom Tillman When I think back on Tom Tillman as I knew him at Northwestern University, I do so with admiration and respect. He was a clinician, a scholar, a scientist, and a teacher, with a rare breadth of knowledge and historical appreciation of the field of audiology. He participated in the early development of audiology, specializing in speech perception and masking, and closed his career working with cochlear implants. Somewhere in the middle, he served on my doctoral committee, contributing his perspective on the developing field of auditory evoked potentials and its relation to auditory perception. So, in contributing the present manuscript to this issue of Seminars dedicated to Tom Tillman, I am hoping that he would have appreciated the fact that I still believe that perceptual processes can be tapped with electrophysiological responses.
Further Information

Publication History

Publication Date:
02 April 2004 (online)

The binaural interaction components (BIC) of the auditory brainstem response (ABR), auditory middle latency response (AMLR), and auditory late latency response (ALLR) are representations of binaural processing throughout the auditory system. The present article reviews the characteristics of the BIC with respect to binaural psychophysical phenomena, development, and aging, and explores its clinical application. The BIC correlates well with gross psychophysical measures of binaural processing. In the ABR, the BIC is consistent with a percept of binaural fusion; additional factors may contribute to the BIC in later responses. The BIC is not completely mature at birth and tends to decline in later years of life. Promising clinical applications are the measurement of maturation of binaural processing, and identification of pathology of the binaural system. Further research is needed to improve the signal-to-noise ratio before the BIC can be used clinically for diagnostic assessment.

REFERENCES

  • 1 Jewett D L. Volume-conducted potentials in response to auditory stimuli as detected by averaging in the cat.  Electroenceph Clin Neurophysiol. 1970;  28 609-618
  • 2 Dobie R A, Berlin C I. Binaural interaction in brainstem evoked responses.  Arch Otolaryngol. 1979;  105 391-408
  • 3 Wrege K, Starr A. Binaural interaction in auditory brainstem evoked potentials.  Arch Neurol. 1981;  38 572-580
  • 4 Fowler C G, Leonards J S. Frequency dependence of the binaural interaction component of the auditory brainstem potentials.  Audiology. 1985;  24 420-429
  • 5 Dobie R A, Norton S J. Binaural interaction inhuman auditory evoked potentials.  Electroenceph clin Neurophysiol. 1980;  49</ 303-313
  • 6 Cone-Wesson B, Ma E, Fowler C G. Effect of signal level and frequency on ABR and MLR binaural interaction in human neonates.  Hear Res. 1997;  106 63-178
  • 7 Debruyne F. Binaural interaction in early, middle, and late auditory evoked responses.  Scand Audiol. 1984;  13 293-296
  • 8 McPherson D L, Starr A. Binaural interaction in auditory evoked potentials: Brainstem, middle-, and long-latency components.  Hear Res. 1993;  66 91-98
  • 9 Moller A R. Neural generators of auditory evoked potentials. In: Jacobson JT Principles and Applications in Evoked Potentials. Boston; Allyn & Bacon 1994: 23-46
  • 10 Gardi J N, Berlin C I. Binaural interaction component: their possible origins in guinea pig auditory brainstem response.  Arch Otolaryngol. 1981;  107 164-167
  • 11 Wada S -I, Starr A. Anatomical bases of binaural interaction auditory brain-stem responses from guinea pig.  Electroencep clin Neurophysiol. 1989;  72 535-544
  • 12 Gaumond R, Psaltikidou M. Models for the generation of the binaural difference response.  J Acoust Soc Am. 1991;  89 454-456
  • 13 Polyakov A, Pratt H. Three-channel Lissajous' trajectory of the binaural interaction components in human auditory brain-stem evoked potentials.  Electroenceph clin Neurophysiol. 1994;  92 396-404
  • 14 Geisler G D, Frishkopf L S, Rosenblith W A. Extracranial responses to acoustic clicks in man.  Science. 1958;  128 1210-1211
  • 15 Kraus N, Ozdamar O, Hier D, Stein L. Auditory middle latency responses (MLRs) in patients with cortical lesions.  Electroenceph clin Neurophysiol. 1982;  54 275-287
  • 16 Parving A, Salomon G, Elberling C, Larsen B, Lassen N A. Middle components of the auditory evoked response in bilateral temporal lobe lesions.  Scand Audiol. 1980;  9 161-167
  • 17 Vaughn Jr H G, Ritter W. The sources of the auditory evoked responses recorded from the human head.  Electroenceph clin Neurophysiol. 1970;  28 360-367
  • 18 Ito S, Hoke M, Pantev C, Lutkenhoner B. Binaural interaction in brainstem auditory evoked potentials elicited by frequency-specific stimuli.  Hear Res. 1988;  35 9-20
  • 19 Horn J H. Frequency dependence of auditory brainstem response and middle latency response binaural interaction components. Unpublished MS thesis Madison, WI; University of Wisconsin 1997
  • 20 Gerull G, Mrowinski D. Brain stem potentials evoked by binaural click stimuli with differences in interaural time and intensity.  Audiology. 1984;  23 265-276
  • 21 Jones S J, Van der Poel J C. Binaural interaction in the brain-stem auditory evoked potential: evidence for a delay line coincidence detection mechanism.  Electroenceph Clin Neurophysiol. 1990;  77 214-224
  • 22 Prasher D K, Sainz M, Gibson W PR. Effect of interaural intensity differences on binaural summation of brainstem auditory-evoked potentials.  Br J Audiol. 1981;  15 189-194
  • 23 Fowler C G. The bifrequency binaural interaction component of the auditory brainstem response.  J Speech Hear Res. 1989;  32 767-772
  • 24 Furst M, Levine R A. McGaffigan PM. Click lateralization is related to the B component of the dichotic brainstem auditory evoked potentials of human subjects.  J Acoust Soc Am. 1985;  78 1644-1651
  • 25 McPherson D L, Starr A. Auditory time-intensity cures in the binaural interaction component of the auditory evoked potentials.  Hear Res. 1995;  89 162-171
  • 26 Hosford-Dunn H, Mendelson T, Salamy A. Binaural interactions in the short-latency evoked potentials of neonates.  Audiology. 1981;  20 394-408
  • 27 Jiang Z D, Tierney T S. Binaural interaction in human neonatal auditory brainstem.  Pediatr Res. 1996;  39 708-714
  • 28 McPherson D L, Tures C, Starr A. Binaural interaction of the auditory brain-stem potentials and middle latency auditory evoked potentials in infants and adults.  Electroenceph. Clin Neurophysiol. 1989;  74 124-130
  • 29 Kelly-Ballweber D, Dobie R A. Binaural interaction measured behaviorally and electrophysiologically in young and old adults.  Audiology. 1984;  23 181-194
  • 30 Woods D L, Clayworth C C. Age-related changes in human middle latency auditory evoked potentials.  Electroenceph Clin Neurophysiol. 1986;  65 297-303
  • 31 Fowler C G, Beach K. Binaural interaction in auditory evoked potentials: effects of age, gender, and frequency. Paper presented at the annual convention of the American Speech-Language-Hearing Association November 2000 Washington, DC;
  • 32 Fowler C G, Torre III P, Kemnitz J W. Effects of caloric restriction and aging on the auditory function of rhesus monkeys (Macaca mulatta): the University of Wisconsin Study.  Hear Res. 2002;  169 24-35
  • 33 Fowler C G, Swanson M R. The validation of adding and subtracting auditory brainstem response waveforms.  Scand Audiol. 1988;  17 195-199
  • 34 McPherson D L, Davies K. Preliminary observations of binaural hearing in an attention-deficit pediatric population.  Fiziol Cheloveka. 1995;  21 47-53
  • 35 Gopal K V, Pierel K. Binaural interaction component in children at risk for central auditory processing disorders.  Scand Audiol. 1999;  28 77-84
  • 36 Galbraith G, Aine C, Squires N, Buchwald J. Binaural interaction in auditory brainstem responses of mentally retarded and nonretarded individuals.  Am J Ment Defic. 1983;  87 551-557
  • 37 Pratt H, Polyakov A, Aharonson V et al.. Effects of localized pontine lesions on auditory brain-stem evoked potentials and binaural processing in humans.  Electroenceph Clin Neurophysiol. 1998;  108 511-520
  • 38 Riedel H, Kollmeier B. Comparison of binaural auditory brainstem responses and the binaural difference potential evoked by chirps and clicks.  Hear Res. 2002;  169 85-96
  • 39 Fowler C G, Broadard R S. Low-frequency Activity in the binaural interaction component of the auditory brainstem response.  Ear Hear. 1988;  9 65-69
  • 40 Jiang Z D. Binaural interaction and the effects of stimulus intensity and repetition rate in human auditory brain-stem.  Electroenceph Clin Neurophysiol. 1996;  100 505-516
  • 41 Suzuki T, Kobayashi K, Aoki K, Umegaki Y. Effect of sleep on binaural interaction in auditory brainstem response and middle latency response.  Audiology. 1992;  31 25-30
  • 42 Brantberg K, Fransson P A, Hansson H, Rosenhall U. Measures of the binaural interaction component in human auditory brainstem response using objective detection criteria.  Scand Audiol. 1999;  28 15-26
  • 43 Gunnarson A D, Finitzo T. Conductive hearing loss during infancy: effects on later auditory brain stem electrophysiology.  J Speech Hear Res. 1991;  34 1207-1215
  • 44 Stollman M HP, Snik A FM, Hombergen G CJH, Nieuwenhuys R, ten Koppel P. Detection of the binaural interaction component in the auditory brainstem response.  Br J Audiol. 1996;  30 227-232
  • 45 Levine R A. Binaural interaction in brainstem potentials of human subjects.  Ann Neurol. 1981;  9 384-393
  • 46 Dobie R A. Binaural interaction in auditory brainstem responses: theoretical and methodological considerations.  J Acoust Soc Am. 1982;  71 1031-1033
  • 47 Ainslie P J, Boston J R. Comparison of brain stem auditory evoked potentials for monaural and binaural stimuli.  Electroenceph Clin Neurophysiol. 1980;  49 291-302
  • 48 Dobie R A, Wilson M J. Binaural interaction in auditory brain-stem responses: effects of masking.  Electroenceph Clin Neurophysiol. 1985;  62 56-64
  • 49 Decker T N, Howe S W. Auditory tract asymmetry in brain-stem electrical responses during binaural stimulation.  J Acoust Soc Am. 1981;  69 1084-1090

Cynthia G FowlerPh.D. 

Department of Communicative Disorders

1975 Willow Drive, University of Wisconsin-Madison, Madison, WI 53706

Email: cgfowler@facstaff.wisc.edu

    >