References
1a
Joule JA. In Science of Synthesis
Vol. 10:
Thomas EJ.
Thieme;
Stuttgart:
2000.
p.361-652
1b
Gribble GW.
J. Chem. Soc., Perkin Trans. 1
2000,
1045
1c
Lounasmaa M.
Tolvanen A.
Nat. Prod. Rep.
2000,
17:
75
2a
Sezen B.
Sames D.
J. Am. Chem. Soc.
2003,
125:
5274
2b
Beccalli EM.
Broggini G.
Tetrahedron Lett.
2003,
44:
1919
3
Wang S.-Y.
Ji S.-J.
Loh T.-P.
Synlett
2003,
2377
4a
Agnusdei M.
Bandini M.
Melloni A.
Umani-Ronchi A.
J. Org. Chem.
2003,
68:
7126
4b
Bandini M.
Fagioli M.
Melchiorre P.
Melloni A.
Umani-Ronchi A.
Tetrahedron Lett.
2003,
44:
5843
4c
Jørgensen KA.
Synthesis
2003,
1117
4d
Yadav JS.
Reddy BVS.
Satheesh G.
Tetrahedron Lett.
2003,
44:
8331
4e
Evans DA.
Scheidt KA.
Fandrik KR.
Wai Lam H.
Wu J.
J. Am. Chem. Soc.
2003,
125:
10780
4f
Bandini M.
Fagioli M.
Melloni A.
Umani-Ronchi A.
Synthesis
2003,
397
4g
Bandini M.
Cozzi PG.
Giacobini M.
Melchiorre P.
Selva S.
Umani-Ronchi A.
J. Org. Chem.
2002,
67:
3700
4h
Yadav JS.
Reddy BVS.
Abraham S.
Sabitha G.
Synlett
2002,
1550
4i
Harrington PE.
Kerr MA.
Synlett
1996,
1047
5a
Bartoli G.
Bertolacci M.
Bosco M.
Foglia G.
Giuliani A.
Marcantoni E.
Sembri L.
Torregiani E.
J. Org. Chem.
2003,
68:
4594
5b
Ji SH.
Wang S.-Y.
Synlett
2003,
2074
5c
Ji SH.
Zhou M.-F.
Gu D.-G.
Wang S.-Y.
Loh T.-P.
Synlett
2003,
2077
5d
Reddy AV.
Ravinder K.
Goud TV.
Krishnaiah P.
Raju TV.
Venkateswarlu Y.
Tetrahedron Lett.
2003,
44:
6257
5e
Alam MM.
Varala R.
Adapa SR.
Tetrahedron Lett.
2003,
44:
5115
6 For a recent review on gold catalysis, see: Dyker G.
Angew. Chem. Int. Ed.
2000,
39:
4237
7a
Casado R.
Contel M.
Laguna M.
Romero P.
Sanz S.
J. Am. Chem. Soc.
2003,
125:
11925
7b
Dyker G.
Hildebrandt D.
Liu J.
Merz K.
Angew. Chem. Int. Ed.
2003,
42:
4399
7c
Asao N.
Nogami T.
Lee S.
Yamamoto Y.
J. Am. Chem. Soc.
2003,
125:
10921
7d
Hashmi AS.
Ding L.
Bats JW.
Fischer P.
Frey W.
Chem.-Eur. J.
2003,
9:
4339
7e
Mizushima E.
Hayashi T.
Tanaka M.
Org. Lett.
2003,
5:
3349
7f
Abbiati G.
Arcadi A.
Bianchi G.
Di Giuseppe S.
Marinelli F.
Rossi E.
J. Org. Chem.
2003,
68:
6959
7g
Arcadi A.
Bianchi G.
Di Giuseppe G.
Marinelli F.
Green Chem.
2003,
5:
64
7h
Arcadi A.
Chiarini M.
Di Giuseppe S.
Marinelli F.
Synlett
2003,
203
7i
Krause N.
Hoffmann-Röder A.
Canisius J.
Synthesis
2002,
1759
7j
Arcadi A.
Di Giuseppe S.
Marinelli F.
Rossi E.
Tetrahedron: Asymmetry
2001,
12:
2715
7k
Arcadi A.
Di Giuseppe S.
Marinelli F.
Rossi E.
Adv. Synth. Catal.
2001,
343:
443
7l
Dankwardt JW.
Tetrahedron Lett.
2001,
42:
5809
8
Wei C.
Li C.-J.
J. Am. Chem. Soc.
2003,
125:
9584
9
Fuchita Y.
Utsunomiya Y.
Yasutake M.
J. Chem. Soc., Dalton Trans.
2001,
2330
10
Zamora F.
Zangrado E.
Furlan M.
Randaccio L.
Lippert B.
J. Organomet. Chem.
1998,
552:
127
11
Zamora F.
Amo-Ochoa P.
Fischer B.
Scimanski A.
Lippert B.
Angew. Chem. Int. Ed.
1999,
38:
2274
12
Reetz MT.
Sommer K.
Eur. J. Org. Chem.
2003,
3485
13
Hasmi ASK.
Schwarz L.
Choi J.-H.
Frost TM.
Angew. Chem. Int. Ed.
2000,
39:
2285
14 Formation of 3-indolylaurate species by aminoauration of 2-alkynylanilines was suggested by: Iritani K.
Matsubara S.
Utimoto K.
Tetrahedron Lett.
1988,
29:
1799
15
Dyker G.
Muth E.
Hashmi ASK.
Ding L.
Adv. Synth. Catal.
2003,
345:
1247
16
General Procedure for the Synthesis of Indoles 3. To a 1:1 mol ratio solution of indole 1 and α,β-enone 2 in EtOH was added NaAuCl4·2H2O (5 mol%). The resulting mixture was allotted to react under stirring at r.t. or at 30 °C and the reaction was monitored by TLC or GC-MS. After completion, the solvent was removed by evaporation. To the residue, acetone (few mL) was added to precipitate the catalyst, which was separated by filtration. The filtrate was concentrated and the crude products were purified by chromatography on silica gel (230-400 mesh) eluting with n-hexane/EtOAc mixtures.
17 Selected data for 3b: IR (neat): 3420, 1725 cm-1. 1H NMR: δ = 8.25 (bs, 1 H), 7.64-7.60 (m, 1 H), 7.24-7.03 (m, 3 H), 6.80 (d, J = 2.3 Hz, 1 H), 3.47-3.40 (m, 1 H), 2.84-2.76 (m, 2 H), 1.95 (s, 3 H), 1.73-1.63 (m, 2 H), 1.25-1.15 (m, 4 H), 0.77 (t, J = 3.9 Hz, 3 H). 13C NMR: δ = 209.51, 136.39, 126.34, 121.55, 121.26, 119.02, 118.86, 118.38, 111.31, 50.07, 35.49, 32.73, 30.24, 29.63, 22.51, 13.89. MS: m/e (relative intensity) = 244 (100) [M + 1]+, 243 (35) [M+], 186 (63). 3c: IR (KBr): 3430, 1715 cm-1. 1H NMR (diastereomeric mixture, 2:1 ratio): δ = 7.80 (bs, 2 H), 7.39-7.03 (m, 18 H), 6.73 (bs, 2 H), 4.82 (t, J = 7.4 Hz, 2 H), 3.24 (dd, J = 16.3 and 7.4 Hz, 2 H), 3.09 (dd, J = 16.3 and 7.4 Hz, 2 H);(diastereoisomer) δ = 7.78 (bs, 2 H), 7.32-7.00 (m, 18 H), 6.69 (bs, 2 H), 4.82 (t, J = 7.4 Hz, 2 H), 3.19 (dd, J = 16.3 and 7.5 Hz, 2 H), 3.09 (dd, J = 16.3 and 7.5 Hz, 2 H). 13C NMR (diastereomeric mixture, 2:1 ratio): δ = 207.79, 143.97 136.65, 128.37, 127.66, 126.59, 126.19, 122.11, 121.62, 119.54, 119.45, 118.85, 111.09, 49.77, 38.12; (diastereoisomer) δ = 207.70, 144.15, 136.62, 128.43, 127.77, 126.64, 126.26, 122.11, 121.49, 119.50, 119.40, 118.78, 111.05, 49.90, 38.18. ESI-MS: m/e (relative intensity) = 469 (100) [M + 1+]. 3e: IR (KBr): 3360, 1720 cm-1. 1H NMR: δ = 8.28 (bs, 1 H), 7.44 (s, 1 H), 7.17 (s, 1 H), 7.04 (s, 1 H), 2.96 (t, J = 7.2 Hz, 2 H), 2.79 (t, J = 7.2 Hz, 2 H), 2.13 (s, 3 H). 13C NMR: δ = 208.03, 135.59, 132.11, 129.09, 123.61, 121.49, 116.21, 117.06, 43.73, 29.99, 19.07. MS: m/e (relative intensity) = 259 (10) [M+], 257 (63) [M+], 256 (63) [M + 1]+, 255 (100) [M+], 214 (34), 213 (49), 212 (19), 200(83), 199 (100), 198 (39). 3f: IR (KBr): 3400, 1710 cm-1. 1H NMR: δ = 8.20 (bs, 1 H), 7.57-7.14 (m, 9 H), 3.19-3.11 (m, 2 H), 2.79-2.71 (m, 2 H), 2.05 (s, 3 H). 13C NMR: δ = 208.93, 135.86, 134.44, 132.97, 128.86, 128.66, 127.89, 127.68, 122.27, 119.59, 118.82, 111.55, 110.97, 44.45, 29.90, 18.70. MS: m/e (relative intensity) = 264 (63) [M + 1]+, 207 (100). 3g: IR (KBr): 3360, 1710 cm-1. 1H NMR: δ = 8.15 (s, 1 H), 7.62-7.10 (m, 14 H), 5.09 (t, J = 7.4 Hz, 1 H), 3.46 (dd, J = 16.4 and 7.4 Hz, 1 H), 3.37 (dd, J = 16.4 and 7.4 Hz, 1 H), 1.97 (s, 3 H). 13C NMR: δ = 207.51, 144.45, 136.28, 135.73, 132.98, 128.81, 128.76, 128.43, 128.14, 127.70, 127.48, 126.05, 122.08, 120.61, 119.76, 114.03, 111.21, 49.31, 37.09, 30.31. MS: m/e (relative intensity) = 339 (23) [M+], 283 (100). 3h: IR (KBr): 3300, 1690 cm-1. 1H NMR: δ = 8.14 (s, 1 H), 7.84 (d, J = 7.9 Hz, 1 H), 7.50-7.46 (m, 4 H), 7.44-7.40 (m, 2 H), 7.24 (t, J = 7.9 Hz, 1 H), 7.17 (t, J = 7.6 Hz, 1 H), 3.46-3.40 (tt, J = 12.9 and 4.1 Hz, 1 H), 3.14 (t, J = 13.6 Hz, 2 H), 2.62-2.45 (m, 2 H), 2.21-1.66 (m, 4 H). 13C NMR: δ = 211.33, 136.29, 134.52, 132.97, 128.88, 128.75, 128.16, 126.94, 122.13, 120.10, 119.55, 115.11, 111.38, 48.11, 41.39, 37.14, 31.70, 25.87. MS: m/e (relative intensity) = 289 (100) [M+], 246 (49), 232 (74), 218 (58). 3i: IR (neat): 3360, 1715 cm-1. 1H NMR: δ = 8.25 (bs, 1 H), 7.57-7.10 (m, 7 H), 3.26-3.18 (m, 2 H), 2.83-275 (m, 2 H), 2.12 (s, 3 H). 13C NMR: δ = 207.45, 139.58, 132.00, 131.34, 130.88, 130.01, 128.72, 128.52, 127.89, 127.73, 126.25, 122.49, 120.59, 37.33, 32.91, 29.80. MS: m/e (relative intensity) = 269 (63) [M+], 213 (100). 3j: IR (KBr): 3400, 1710 cm-1. 1H NMR: δ = 8.13 (bs, 1 H), 7.52-7.06 (m, 9 H), 6.04 (bs, 1 H), 3.15-3.07 (m, 2 H), 2.80-2.72 (m, 2 H), 2.50-1.95 (m, 7 H), 2.13 (s, 3 H). 13C NMR: δ = 209.09, 146.37, 135.97, 135.13, 129.82, 128.65, 128.44, 127.15, 126.82, 126.19, 121.83, 119.30, 118.38, 110.63, 110.51, 44.79, 39.42, 33.67, 30.02, 29.83, 28.74, 19.10. MS: m/e (relative intensity) = 343 (100) [M+], 286 (86). 3k: IR (neat): 3440, 1730 cm-1. 1H NMR: δ = 7.92 (bs, 1 H), 7.46-7.01 (m, 14 H), 6.02 (bs, 1 H), 5.08-5.05 (m, 1 H), 3.43-3.36 (m, 2 H), 2.62-2.46 (m, 1 H), 2.16-2.08 (m, 4 H), 2.06 (s, 3 H), 2.04-1.96 (m, 2 H). MS: m/e (relative intensity) = 419 (38) [M+], 362 (100). 3l: IR (neat): 3380, 1680 cm-1. 1H NMR: δ = 7.92 (d, J = 7.9 Hz, 1 H), 7.54-7.04 (m, 14 H), 5.17 (t, J = 7.3 Hz, 1 H), 4.01 (dd, J = 16.7 and 6.9 Hz, 1 H), 3.93 (dd, J = 16.7 and 6.9 Hz, 1 H), 2.87-2.75 (m, 2 H), 1.62-1.58 (m, 2 H), 1.39-1.36 (m, 2 H), 0.92 (t, J = 7.3 Hz, 3 H). 13C NMR: δ = 199.08, 144.26, 137.09, 136.34, 135.54, 132.84, 128.41, 128.18, 128.01, 127.47, 125.78, 120.70, 119.36, 119.08, 113.27, 110.50, 43.84, 36.59, 31.83, 26.02, 22.52, 13.82. EI-MS: m/e (relative intensity) = 381 (30) [M+], 263 (100).
18
Sundberg RJ. In Indoles
Academic Press;
London:
1996.
19 Temperatures are reported as bath temperature.
20
Srivastava N.
Banik BK.
J. Org. Chem.
2003,
68:
2109
21
Kobayashi S.
Kakumoto K.
Sugiura M.
Org. Lett.
2002,
4:
1319
22
Sequential Procedure for the Preparation of 5a. To a solution of the indole 1a (0.072 g, 0.612 mmol) and the trans,trans-dibenzylidene acetone 2c (0.287 g, 1.22 mmol) in EtOH (3 mL) was added NaAuCl4·2H2O (0.012 g, 0.0306 mmol). The resulting mixture was allotted to react under stirring at 30 °C. After 2 h, the temperature was raised at 60 °C and the heating was continued for 3 h after which the reaction mixture was concentrated in vacuo. The residue was purified by column chromatography eluting with n-hexane/EtOAc 90/10 v/v mixture to afford 4a (0.17 g, 80% yield). IR (KBr): 3440, 1720 cm-1. 1H NMR (diastereomeric mixture, 2.1:1 ratio): major isomer: δ = 7.56 (bs, NH, 1 H), 7.50-6.90 (m, Csp2-H, 14 H), 4.82 (t, J = 4.5 Hz, 10-CH, 1 H), 4.54 (dd, J = 2.3 and 12.1 Hz, 6-CH, 1 H), 3.40 (d, J = 4.5 Hz, 9-CH, 2 H), 3.21 (dd, J = 12.1 and 15.5 Hz, 7-CH
a
, 1 H) 2.73 (dd, J = 2.3 and 15.5 Hz, 7-CH
b
, 1 H); minor isomer: δ = 7.68 (bs, NH, 1 H), 7.50-6.90 (m, Csp2-H, 14 H), 4.86 (dd, X part of ABX system, 6-CH, 1 H), 4.78 (dd, J = 4.5 and 7.9 Hz, 10-CH, 1 H), 3.47 (dd, J = 8.3 and 14.0 Hz, 9-CH
a
, 1 H), 3.08 (dd, J = 4.5 and 14.4 Hz, 9-CH
b
, 1 H), 3.18-3.09 (m, AB part of ABX system 7-CH, 2 H). 13C NMR: (diastereomeric mixture, 2.1:1 ratio): major isomer: δ = 209.97 (8-CO), 143.43 (1-CPha), 141.78 (1-CPhb), 136.57 (5a-C), 134.88 (4a-C), 129.26, 128.62 (10b-C), 128.60, 128.05, 127.71, 127.42, 126.45 (Pha and Phb), 122.13 (3-C), 119.71 (2-C), 118.63 (1-C), 113.65 (10a-C), 110.53 (4-C), 50.37 (7-C), 49.08 (9-C), 41.13 (6-C), 36.42 (10-C); minor isomer: δ = 209.43 (8-CO), 143.66 (1-CPha), 140.01 (1-CPhb), 136.04 (5a-C), 134.76 (4a-C), 129.19, 128.47 (10b-C), 128.18, 128.05, 127.45, 126.49 (Pha and Phb), 121.97 (3-C), 119.65 (2-C), 118.65 (1-C), 112.86 (10a-C), 110.53 (4-C), 50.06 (4-C), 49.93 (7-C), 41.02 (6-C), 38.63 (10-C). MS: m/e (relative intensity) = 351 (100) [M+], 219 (47).
23 Selected data for 5b: IR (neat): 3400, 1710 cm-1. 1H NMR: δ = 8.19 (bs, 1 H), 7.52-7.47 (m, 1 H), 7.28-7.24 (m, 1 H), 7.17-7.05 (m, 2 H), 3.30-3.25 (m, 1 H), 2.52-2.28 (m, 4 H), 2.21 (s, 3 H), 2.13-1.73 (m, 4 H). 13C NMR: δ = 210.85, 136.03, 135.11, 129.01, 121.28, 119.08, 118.25, 110.43, 106.25, 47.09, 41.07, 36.34, 30.77, 25.33, 8.37. MS: m/e (relative intensity) = 227 (100) [M+]. 5c: IR (neat): 3390, 1710 cm-1. 1H NMR: δ = 8.39 (bs, 1 H), 7.57-7.09 (m, 8 H), 3.85 (s, 3 H), 3.55-3.35 (m, 1 H), 2.63-2.58 (m, 2 H), 2.41-2.16 (m, 2 H), 2.05-1.98 (m, 4 H). 13C NMR: δ = 210.28, 158.21, 136.53, 135.20, 130.77, 128.03, 127.01, 121.98, 119.98, 119.20, 114.13, 113.86, 110.64, 55.29, 47.76, 41.10, 36.26, 31.72, 25.23. MS: m/e (relative intensity) = 319 (100) [M+].
24a
Itahara T.
Kawasaki K.
Ouseto F.
Synthesis
1984,
236
24b
Itahara T.
Ikeda M.
Sakakibara T.
J. Chem. Soc., Perkin Trans. 1
1983,
1361
25
Baker RT.
Nguyen P.
Marder TB.
Westcott SA.
Angew Chem., Int. Ed. Engl.
1995,
34:
1336
26a
Snider BB.
Zeng H.
J. Org. Chem.
2003,
68:
545
26b
Abbiati G.
Beccalli EM.
Broggini G.
Zoni C.
J. Org. Chem.
2003,
68:
7625