Semin Plast Surg 2003; 17(4): 351-362
DOI: 10.1055/s-2004-817707
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Flap Prefabrication and Prelamination in Head and Neck Reconstruction

Julian J. Pribaz1,2 , Lifei Guo1
  • 1Harvard Plastic Surgery Program, Brigham and Women's Hospital, Boston, MA
  • 2Division of Plastic Surgery, Brigham and Women's Hospital, Boston, MA
Further Information

Publication History

Publication Date:
13 April 2004 (online)

ABSTRACT

Flap prefabrication and prelamination are relatively new concepts in reconstructive surgery. Although closely related, they are two uniquely different techniques. They are primarily employed in reconstructing complex defects that cannot be repaired with simpler and more conventional techniques. For the head and neck, where defects are often complex, donor options few, and aesthetic demands high, the role of prefabricated and prelaminated flaps is becoming increasingly important. Flap prefabrication starts with transposition of a vascular pedicle into a body of donor tissue that otherwise does not possess an axial blood supply. Flap prelamination, on the other hand, starts with addition of tissue layers into an established vascular bed. Both procedures then require a second stage in which a prefabricated or prelaminated flap is transferred to its final location. This article describes our experience with flap prefabrication and prelamination in the head and neck, reviews the literature, and speculates on the future potential of these reconstructive techniques, especially with evolving tissue engineering and embryonic stem cell technologies.

REFERENCES

  • 1 Pribaz J J, Fine N A. Prefabricated and prelaminated flaps for head and neck reconstruction.  Clin Plast Surg . 2001;  28 261-271
  • 2 Pribaz J J, Fine N A, Orgill D P. Flap prefabrication in the head and neck: a 10-year experience.  Plast Reconstr Surg . 1999;  103 808-820
  • 3 Delaere P R, Hardillo J, Hermans R, Van Den Hof B. Prefabrication of composite tissue for improved tracheal reconstruction.  Ann Otol Rhinol Laryngol . 2001;  110 849-860
  • 4 Chen H C, Kuo Y R, Hwang T L. et al . Microvascular prefabricated free skin flaps for esophageal reconstruction in difficult patients.  Ann Thorac Surg . 1999;  67 911-916
  • 5 Akoz T, Erdoan B, Gorgu M, Kapucu M R, Kargi E. Penile reconstruction in children using double vascular pedicle composite groin flap.  Scand J Urol Nephrol . 1998;  32 225-230
  • 6 Alter G J, Greisman J, Werthman P E, Seid A S, Joseph B J. Use of a prefabricated tunica vaginalis fascia flap to reconstruct the tunica albuginea after recurrent penile prosthesis extrusion.  J Urol . 1998;  159 128-132
  • 7 Khouri R K, Upton J, Shaw W W. Principles of flap prefabrication.  Clin Plast Surg . 1992;  19 763-771
  • 8 Tark K C, Chung S, Shin K S, Park B Y. Skin flap prefabrication using acellular dermal matrix and cultured keratinocytes in a porcine model.  Ann Plast Surg . 2000;  44 392-397
  • 9 Safak T, Akyurek M, Ozcan G, Kecik A, Aydin M. Osteocutaneous flap prefabrication based on the principle of vascular induction: an experimental and clinical study.  Plast Reconstr Surg . 2000;  105 1304-1313
  • 10 Orringer J S, Shaw W W, Borud L J, Freymiller E G, Wang S A, Markowitz B L. Total mandibular and lower lip reconstruction with a prefabricated osteocutaneous free flap.  Plast Reconstr Surg . 1999;  104 793-797
  • 11 Yao S T. Microvascular transplantation of prefabricated free thigh flap.  Plast Reconstr Surg . 1982;  69 568
  • 12 Gillies H. A new free graft applied to the reconstruction of nostril.  Br J Surg . 1942;  30 305
  • 13 Pribaz J J, Fine N A. Prelamination: defining the prefabricated flap: a case report and review.  Microsurgery . 1994;  15 618-623
  • 14 Duffy Jr J F, Maitz P KM, Hergrueter C A. et al . Maximizing flap survival in a prefabrication model using exogenous and endogenous bFGF: a new approach.  Microsurgery . 1996;  17 176-179
  • 15 Li Q F, Zhang W X, Reis E D. et al . Human recombinant vascular endothelial growth factor accelerates maturation of rat tail artery prefabricated flap.  Surg Forum Lett . 1999;  50 585
  • 16 Haws M J, Erdman D, Bayati S, Brown R E, Russell R C. Basic fibroblast growth factor induced angiogenesis and prefabricated flap survival.  J Reconstr Microsurg . 2001;  17 39-42
  • 17 Li Q F, Reis E D, Zhang W X, Silver L, Fallon J T, Weinberg H. Accelerated flap prefabrication with vascular endothelial growth factor.  J Reconstr Microsurg . 2000;  16 45-49
  • 18 Ko C Y, Shaw W W. Durability of prefabricated versus normal random flaps against a bacterial challenge.  Plast Reconstr Surg . 1997;  99 372-377
  • 19 Maitz P KM, Pribaz J J, Duffy F J. et al . The value of the delay phenomenon in flap prefabrication: an experimental study in rabbits.  Br J Plast Surg . 1994;  47 149-154
  • 20 Falco N A, Pribaz J J, Eriksson E. Vascularization of skin following implantation of an arteriovenous pedicle: implications in flap fabrications.  Microsurgery . 1992;  13 249-254
  • 21 Gurunluolu R, Bayramicli M, Doan T, Cakalaaolu F, Numanolu A. Use of fascial grafts as an interface in flap prefabrication: an experimental study.  Ann Plast Surg . 1999;  43 42-48
  • 22 Tark K C, Tuchler R E, Shaw W W. Flap prefabrication: effectiveness of different vascular carriers.  Ann Plast Surg . 1996;  37 298-304
  • 23 Tark K C, Shaw W W. The revascularization interface in flap prefabrication: a quantitative and morphologic study of the relationship between carrier size and surviving area.  J Reconstr Microsurg . 1996;  12 325-330
  • 24 Maitz P KM, Pribaz J J, Hergrueter C A. Impact of tissue expansion on flap prefabrication: an experimental study in rabbits.  Microsurgery . 1996;  17 35-40
  • 25 Kimura N, Hasumi T, Satoh K. Prefabricated thin flap using the transversalis fascia as a carrier.  Plast Reconstr Surg . 2001;  108 1972-1980
  • 26 Gloe T, Sohn H Y, Meininger G A, Pohl U. Shear stress-induced release of basic fibroblast growth factor from endothelial cells is mediated by matrix interaction via integrin alpha(v)beta3.  J Biol Chem . 2002;  277 23453-23458
  • 27 Rivilis I, Milkiewicz M, Boyd P. et al . Differential involvement of MMP-2 and VEGF during muscle stretch-versus shear stress-induced angiogenesis.  Am J Physiol Heart Circ Physiol . 2002;  283 1430-1438
  • 28 Saray A, Teoman Tellioglu A, Altinok G. Prefabrication of a free peripheral nerve graft following implantation on an arteriovenous pedicle.  J Reconstr Microsurg . 2002;  18 281-288
  • 29 Tan B K, Chen H C, Wei F C. et al . Formation of independently revascularized bowel segments using the rectus abdominis muscle flap: a rat model for jejunal prefabrication.  Plast Reconstr Surg . 2002;  109 655-663
  • 30 Chiarini L, De Santis G, Bedogni A, Nocini P F. Lining the mouth floor with prelaminated fascio-mucosal free flaps: clinical experience.  Microsurgery . 2002;  22 177-186
  • 31 Nehrer-Tairych G V, Millesi W, Schuhfried O, Rath T. A comparison of the donor-site morbidity after using the prelaminated fasciomucosal flap and the fasciocutaneous radial forearm flap for intraoral reconstruction.  Br J Plast Surg . 2002;  55 198-202
  • 32 Miyawaki T, Degner D, Jackson I T. et al . Easy tissue expansion of prelaminated mucosa-lined flaps for cheek reconstruction in a canine model.  Plast Reconstr Surg . 2002;  109 1978-1985
  • 33 Carls F R, Jackson I T, Behl A K, Lebeda R, Webster H. Prefabrication of mucosa-lined flaps: a preliminary study in the pig model.  Plast Reconstr Surg . 1998;  101 1022-1028
  • 34 Rath T, Millesi W, Millesi-Schobel G, Lang S. Mucosal prelamination of a radial forearm flap for intraoral reconstruction.  J Reconstr Microsurg . 1997;  13 507-513
  • 35 Rath T, Millesi W, Millesi-Schobel G, Lang S, Glaser C, Todoroff B. Mucosal prelaminated flaps for physiological reconstruction of intraoral defects after tumor resection.  Br J Plast Surg . 1997;  50 303-307
  • 36 Rath T, Tairych G V, Frey M, Lang S, Millesi W, Glaser C. Neuromucosal prelaminated flaps for reconstruction of intraoral lining defects after radical tumor resection.  Plast Reconstr Surg . 1999;  103 821-828
  • 37 Lauer G, Schimming R, Gellrich N C, Schmelzeisen R. Prelaminating the fascial radial forearm flap by using tissue-engineered mucosa: improvement of donor and recipient sites.  Plast Reconstr Surg . 2001;  108 1564-1572
  • 38 Jiao X Y, Tanczos E, Dodic T, Voigt M, Haberstroh J, Stark G B. Prefabrication of bilaminar-epithelialized composite flap with tissue expander and cultured keratinocytes.  Plast Reconstr Surg . 1999;  103 138-144
  • 39 Can Z, Apaydin I, Erocen A R, Demirseren M E, Sabuncuolu B. Prefabrication of a high-density porous polyethylene implant using a vascular induction technique.  Ann Plast Surg . 1998;  41 264-269
  • 40 Ting V, Sims C D, Brecht L E. et al . In vitro prefabrication of human cartilage shapes using fibrin glue and human chondrocytes.  Ann Plast Surg . 1998;  40 413-420
  • 41 Pribaz J J, Weiss D D, Mulliken J B, Eriksson E. Prelaminated free flap reconstruction of complex central facial defects.  Plast Reconstr Surg . 1999;  104 357-365
  • 42 Rohner D, Bucher P, Kunz C, Hammer B, Schenk R K, Prein J. Treatment of severe atrophy of the maxilla with the prefabricated free vascularized fibula flap.  Clin Oral Implants Res . 2002;  13 44-52
  • 43 Schlenz I, Korak K J, Kunstfeld R, Vinzenz K, Plenk Jr H, Holle J. The dermis-prelaminated scapula flap for reconstructions of the hard palate and the alveolar ridge: a clinical and histologic evaluation.  Plast Reconstr Surg . 2001;  108 1519-1524
    >