Z Orthop Ihre Grenzgeb 2004; 142(2): 241-247
DOI: 10.1055/s-2004-817653
Varia
© Georg Thieme Verlag Stuttgart · New York

cDNA-Microarrays in der Knorpelforschung - Funktionale Genomik der Osteoarthrose

cDNA-Microarray Technology in Cartilage Research - Functional Genomics of OsteoarthritisT.  Aigner1 , F.  Finger1 , A.  Zien2 , E.  Bartnik3
  • 1Osteoarthrose, Pathologisches Institut Erlangen
  • 2Max-Planck-Institut für Biologische Kybernetik, Tübingen
  • 3Aventis Pharma Deutschland, Disease Group Osteoarthritis, Frankfurt
Further Information

Publication History

Publication Date:
23 April 2004 (online)

Zusammenfassung

Die funktionale Genomanalyse stellt einen neuen experimentellen Ansatz dar, komplexe Erkrankungen wie die Osteoarthrose auf molekularer Ebene zu analysieren. Die Charakterisierung der molekularen Veränderungen auf zellulärer Ebene führt zu einem verbesserten Verständnis der molekularen Pathomechanismen dieser Erkrankung. Insbesondere kann auch zur Identifizierung und Charakterisierung neuer Zielmoleküle für therapeutische Interventionen beigetragen werden. Weiterhin sind potenzielle molekulare Marker für die Diagnose und die Verlaufskontrolle der Osteoarthrose Ziel differenzieller Genanalysen. Die Mikro-Array-Technologie ergänzt klassische biochemische und molekularbiologische Analyseansätze (ersetzt diese jedoch nicht) bei der Aufklärung krankheitsrelevanter Gene. Das ganze exprimierte Genom erfassende Analysen werden molekulare Netzwerke erschließen und Moleküle im anabol-katabolen Gleichgewicht des Gelenkknorpels sowie die relevanten intrazellulären Signalübertragungskaskaden identifizieren. Wichtig ist im Moment, auch die Limitationen der Mikro-Array-Technologie mit zu berücksichtigen, um Überinterpretationen von Ergebnissen zum jetzigen Zeitpunkt zu vermeiden. Dies könnte irreführend sein und verhindern, das Potenzial dieser Technologie effizient in die Aufklärung der Osteoarthrose einzubringen.

Abstract

Functional genomics represents a new challenging approach in order to analyze complex diseases such as osteoarthritis on a molecular level. The characterization of the molecular changes of the cartilage cells, the chondrocytes, enables a better understanding of the pathomechanisms of the disease. In particular, the identification and characterization of new target molecules for therapeutic intervention is of interest. Also, potential molecular markers for diagnosis and monitoring of osteoarthritis contribute to a more appropriate patient management. The DNA-microarray technology complements (but does not replace) biochemical and biological research in new disease-relevant genes. Large-scale functional genomics will identify molecular networks such as yet identified players in the anabolic-catabolic balance of articular cartilage as well as disease-relevant intracellular signaling cascades so far rather unknown in articular chondrocytes. However, at the moment it is also important to recognize the limitations of the microarray technology in order to avoid over-interpretation of the results. This might lead to misleading results and prevent to a significant extent a proper use of the potential of this technology in the field of osteoarthritis.

Literaturangaben

  • 1 Sandell L J, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis.  Arthritis Res. 2001;  3 101-113
  • 2 Eisen M B, Spellman P T, Brown P O, Botstein D. Cluster analysis and display of genome-wide expression patterns.  Proc Natl Acad Sci U S A. 1998;  95 14 863-14 868
  • 3 Suzuki T, Higgins P J, Crawford D R. Control selection for RNA quantitation.  BioTechniques. 2000;  29 332-337
  • 4 Velculescu V E, Madden S L, Zhang L, Lash A E, Yu J, Rago C, Lal A, Wang C J, Beaudry G A, Ciriello K M, Cook B P, Dufault M R, Ferguson A T, Gao Y, He T C, Hermeking H, Hiraldo S K, Hwang P M, Lopez M A, Luderer H F, Mathews B, Petroziello J M, Polyak K, Zawel L, Kinzler K W. Analysis of human transcriptomes.  Nat Genet. 1999;  23 387-388
  • 5 Goldsworthy S M, Goldsworthy T L, Sprankle C S, Butterworth B E. Variation in expression of genes used for normalization of Northern blots after induction of cell proliferation.  Cell Proliferation. 1993;  26 511-518
  • 6 Zien A, Aigner T, Zimmer R, Lengauer T. Centralization: a new paradigm for the normalization of gene expression data.  Bioinformatics. 2001;  17 S 323-S 331
  • 7 Aigner T, Zien A, Bartnik E, Zimmer R. Functional genomics of osteoarthritis.  Pharmacogenomics. 2002;  3 635-650
  • 8 Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research.  Behav Brain Res. 2001;  125 279-284
  • 9 Erickson G R, Gimble J M, Franklin D M, Rice H E, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo.  Biochem Biophys Res Commun. 2002;  290 763-769
  • 10 Li L, Weinberg C R, Darden T A, Pedersen L G. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method.  Bioinformatics. 2001;  17 1131-1142
  • 11 Xiong M, Fang X, Zhao J. Biomarker identification by feature wrappers.  Genome Res. 2001;  11 1878-1887
  • 12 Aigner T, Zien A, Gehrsitz A, Gebhard P M, McKenna L A. Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology.  Arthritis Rheum. 2001;  44 2777-2789
  • 13 Bau B, Gebhard P M, Haag J, Knorr T, Bartnik E, Aigner T. Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro.  Arthritis Rheum. 2002;  46 2648-2657
  • 14 Homandberg G A, Wen C. Exposure of cartilage to a fibronectin fragment amplifies catabolic processes while also enhancing processes to limit damage.  J Orthop Res. 1998;  16 237-246
  • 15 Homandberg G A, Wen C, Hui F. Cartilage damaging activities of fibronectin fragments derived from cartilage and synovial fluid.  Osteoarthritis Cartilage. 1998;  6 231-244
  • 16 Homandberg G A. Potential regulation of cartilage metabolism in osteoarthritis by fibronectin fragments.  Front Biosci. 2000;  4 713-730
  • 17 Stokes D G, Liu G, Coimbra I B, Velazquez S, Crowl R M, Jimenez S A. Assessment of the gene expression profile of differentiated and dedifferentiated human fetal chondrocytes by microarray analysis.  Arthritis Rheum. 2002;  46 404-419
  • 18 Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vecsei V, Schlegel J. Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture.  Osteoarthritis Cartilage. 2002;  10 62-70
  • 19 Rose C S, Malcolm S. A TWIST in development.  Trends Genet. 1997;  13 384-387
  • 20 Fuchtbauer E M. Expression of M-twist during postimplantation development of the mouse.  Dev Dyn. 1995;  204 316-322
  • 21 Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, Weber R M, Ewerbeck V, Richter W. Cartilage-like gene expression in differentiated human stem cell spheroids: A comparison of bone marrow-derived and adipose tissue-derived stromal cells.  Arthritis Rheum. 2003;  48 418-429
  • 22 Zhang H, Liew C C, Marshall K W. Microarray analysis reveals the involvement of beta-2 microglobulin (B2M) in human osteoarthritis.  Osteoarthritis Cartilage. 2002;  10 950-960
  • 23 Connor J R, Kumar S, Sathe G, Mooney J, O’Brien S P, Mui P, Murdock P R, Gowen M, Lark M W. Clusterin expression in adult human normal and osteoarthritic articular cartilage.  Osteoarthritis Cartilage. 2001;  9 727-737
  • 24 Steck E, Breit S, Breusch S J, Axt M, Richter W. Enhanced expression of the human chitinase 3-like 2 gene (YKL-39) but not chitinase 3-like 1 gene (YKL-40) in osteoarthritic cartilage.  Biochem Biophys Res Commun. 2002;  299 109-115
  • 25 Knorr T, Obermayr F, Bartnik E, Zien A, Aigner T. YKL-39 (chitinase 3-like protein 2), but not YKL-40 (chitinase 3-like protein 1) is up-regulated in osteoarthritic chondrocytes. Ann Rheum Dis In press.
  • 26 Sandberg M, Vuorio E. Localization of types I, II, and III collagen mRNAs in developing human skeletal tissues by in situ hybridization.  J Cell Biol. 1987;  104 1077-1084
  • 27 Aigner T, Stöß H, Weseloh G, Zeiler G, von der Mark K. Activation of collagen type II expression in osteoarthritic and rheumatoid cartilage.  Virchows Arch B Cell Pathol Incl Mol Pathol. 1992;  62 337-345
  • 28 Aigner T, Bertling W, Stöß H, Weseloh G, von der Mark K. Independent expression of fibril-forming collagens I, II, and III in chondrocytes in human osteoarthritic cartilage.  J Clin Invest. 1993;  91 829-837
  • 29 Aigner T, Zhu Y, Chanksi H, Matsen F A, Maloney W J, Sandell L J. Reexpression of procollagen type II A by adult articular chondrocytes in osteoarthritis cartilage.  Arthritis Rheum. 1999;  42 1443-1450
  • 30 Williams J M, Plaza V, Hut F, Wen C, Kuettner K E, Homandberg G A. Hyaluronic acid suppresses fibronectin fragment mediated cartilage chondrolysis: II. In vivo.  Osteoarthritis Cartilage. 1997;  5 235-240
  • 31 Johansson N, Saarialho-Kere U, Airola K, Herva R, Nissinen L, Westermarck J, Vuorio E, Heino J, Kähäri V-M. Collagenase-3 (MMP-13) is expressed by hypertrophic chondrocytes, periosteal cells, and osteoblasts during human fetal bone development.  Dev Dyn. 1997;  208 387-397
  • 32 Reichenberger E, Aigner T, von der Mark K, Stöss H, Bertling W. In situ hybridization studies on the expression of type X collagen in fetal human cartilage.  Dev Biol. 1991;  148 562-572
  • 33 Girkontaité I, Frischholz S, Lammi P, Wagner K, Swoboda B, Aigner T, von der Mark K. Immunolocalization of type X collagen in normal fetal and adult osteoarthritic cartilage with monoclonal antibodies.  Matrix Biol. 1996;  15 231-238
  • 34 Lozada C J, Altman R D. Animal models of cartilage breakdown. In: Seibel MJ, Robins SP, Bilezikian JP, (eds) Dynamics of bone and cartilage metabolism. Academic Press 1999: 339-352
  • 35 Goldring M B, Birkhead J R, Sandell L J, Kimura T, Krane S M. Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes.  J Clin Invest. 1988;  82 2026-2037
  • 36 Tyler J A. Insulin-like growth factor I can decrease degradation and promote synthesis of proteoglycan in cartilage exposed to cytokines.  Biochem J. 1989;  260 543-548
  • 37 Mengshol J A, Vincenti M P, Coon C I, Barchowsky A, Brinckerhoff C E. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p 38, c-Jun N-terminal kinase, and nuclear factor κ B: differential regulation of collagenase 1 and collagenase 3.  Arthritis Rheum. 2000;  43 801-811
  • 38 Mitchell P G, Magna H A, Reeves L M, Lopresti-Morrow L L, Yocum S A, Rosner P J, Geoghegan K F, Hambor J E. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage.  J Clin Invest. 1996;  97 761-768
  • 39 Firestein G S, Pisetsky D S. DNA microarrays: boundless technology or bound by technology? Guidelines for studies using microarray technology.  Arthritis Rheum. 2002;  46 859-861

PD Dr. Thomas Aigner

Schwerpunkt Knorpelforschung - Osteoarthrose, Pathologisches Institut

Krankenhausstr. 8-10

91054 Erlangen

    >