Int J Sports Med 2004; 25(5): 339-344
DOI: 10.1055/s-2004-815846
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Sustained Swimming Increases Erythrocyte MCT1 During Erythropoiesis and Ability to Regulate pH Homeostasis in Rat

W. Aoi1 , S. Iwashita1 , M. Fujie1 , M. Suzuki1
  • 1School od Sports Sciences, Waseda University, Japan
Further Information

Publication History

Accepted after revision: September 10, 2003

Publication Date:
18 May 2004 (online)


We investigated the effect of sustained swimming exercise on the increase in monocarboxylate transporter 1 (MCT1) concentration and its ability to regulate pH homeostasis in rat erythrocytes. Male Sprague-Dawley rats aged 9 weeks were divided into sedentary and swimming groups for both 1- and 3-week experiments. The exercise group swam for 30 - 60 min/day, 5 days/week. Before and 1 and 3 weeks after initiation of the exercise, blood was collected for lactate concentration measurement during pre-exercise rest and post-exercise recovery periods. On the last day of each experiment, venous blood and erythroid cells in bone marrow were collected to assay the capacity for erythropoiesis and MCT1 concentration. In the swimming group at 0 weeks (p < 0.05), 1 week (p < 0.01) and 3 weeks (p < 0.001), the blood lactate concentration post-exercise was significantly higher than at rest. The ratio of young erythrocytes to total erythrocytes was significantly higher in the 3-week swimming group than in the sedentary group (p < 0.05). The MCT1 concentration in erythrocytes was higher in the 3-week swimming group than in the sedentary group (18 %, p < 0.05), which was found in young erythrocytes (22 %, p < 0.05) when total erythrocytes were separated into young and old fractions. The MCT1 concentration in erythroid cells was higher in both the 1-week and 3-week swimming groups than in either of the sedentary groups (27 and 28 %, respectively, p < 0.05). The pH recovery of erythrocyte suspensions at 10, 15 and 20 seconds after addition of lactate to the suspension medium was significantly faster in the 3-week swimming group than in the sedentary group (p < 0.001). These findings suggest that erythrocyte MCT1 is increased during erythropoiesis in bone marrow and that the increase of the transporter facilitates, at least partly, lactate/proton co-transport due to sustained swimming exercise in rats.


  • 1 Aoi W, Tsuzuki M, Fujie M, Iwashita S, Suzuki M. Sustained voluntary climbing exercise increases erythrocyte monocarboxylate transporter 1 in rats.  J Clin Biochem Nutr. 2002;  32 23-29
  • 2 Baker S K, McCullagh K J, Bonen A. Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle.  J Appl Physiol. 1998;  84 987-994
  • 3 Beno D J. Amiloride: a molecular probe of sodium transport in tissues and cells.  Am J Physiol Cell Physiol. 1982;  242 131-145
  • 4 Bonen A, Tonouchi M, Miskovic D, Heddle C, Heikkila J J, Halestrap A P. Isoform-specific regulation of the lactate transporters MCT1 and MCT4 by contractile activity.  Am J Physiol Endocrinol Metab. 2000;  279 1131-1138
  • 5 Bonen A, McCullagh K JA, Putman C T, Hultman E, Jones N L, Heingenhauser G JF. Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate.  Am J Physiol Endocrinol Metab. 1998;  274 102-107
  • 6 Carpenter L, Poole R C, Halestrap A P. Cloning and sequencing of the monocarboxylate transporter from mouse Ehrlich-Lettre tumor cell confirms its identity as MCT1 and demonstrates that glycosylation is not required for MCT1 function.  Biochim Biophys Acta. 1996;  1279 157-163
  • 7 Cheng J T, Kahn T, Kaji D M. Mechanism of alterations in sodium-potassium pump of erythrocytes from patients with chronic renal failure.  J Clin Invest. 1984;  74 1811-1820
  • 8 Daniel S S, Morishima H O, James L S, Adamsons Jr K. Lactate and pyruvate gradients between red blood cells and plasma during acute asphyxia.  J Appl Physiol. 1964;  19 1100-1104
  • 9 Gladden L B, Smith E W, Skeleton M S. Lactate distribution in blood during passive and active recovery after intense exercise.  Med Sci Sports Exerc. 1994;  26 35
  • 10 Hark S I, Behmand R A, Arafah B M. Chronic hyperglycemia increases the density of glucose transporters in human erythrocyte membranes.  J Clin Endocrinol Metab. 1991;  72 814-818
  • 11 Hildebrand A, Lowmes W, Emert J, Liu Y, Lehmann M, Steinacker J M. Lactate concentration in plasma and red blood cells during incremental exercise.  Int J Sports Med. 2000;  21 463-468
  • 12 Joiner C H, Lauf P K. Ouabain binding and potassium transport in young and old populations of human red cells.  Membr Biochem. 1978;  1 187-202
  • 13 Juel C, Halestrap A P. Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter.  J Physiol. 1999;  517 633-642
  • 14 Kaji D M, Thakkar U, Kan T. Glucocorticoid-induced alterations in sodium-potassium pump of the human erythrocyte.  J Clin Invest. 1981;  68 422-430
  • 15 Kumagai S, Nishizumi M. Evaluation of exercise intensity indicated by blood lactate in rats during treadmill exercise.  Nippon Eiseigaku Zasshi. 1986;  41 648-652
  • 16 McCullagh K JA, Poole R C, Halestrap A P, Tipton K F, O'Brien M, Bonen A. Chronic electrical stimulation increases MCT1 and lactate uptake in red and white skeletal muscle.  Am J Physiol Endocrinol Metab. 1997;  273 239-246
  • 17 Mueller T J, Jackson C W, Dockter M E, Morrison M. Membrane skeletal alterations during in vivo mouse red blood cell aging.  J Clin Inves. 1986;  79 462-499
  • 18 Ohba Y. Mechanisms for the enhanced red blood cell destruction in hemoglobinopathy.  Jap J Clin Med. 1996;  54 78-83
  • 19 Patch L D, Brooks G A. Effects of training on VO2max and VO2 during two running intensities in rats.  Pflugers Arch. 1980;  386 215-219
  • 20 Pilegaard H, Domino K, Noland T, Juel C, Hellsten Y, Halestrap A P, Bangsbo J. Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle.  Am J Physiol Endocrinol Metab. 1999;  276 255-261
  • 21 Pool R C, Halestrap A P. Reconstitution of the L-lactate carrier from rat and rabbit erythrocyte plasma membranes.  Biochem J. 1988;  254 385-390
  • 22 Poole R C, Halestrap A P. Transport of lactate and other monocarboxylates across mammalian plasma membranes.  Am J Physiol Cell Physiol. 1993;  264 761-782
  • 23 Price Jackson N TVN, Halestrap A P. Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past.  Biochem J. 1998;  329 321-328
  • 24 Rennie C M, Thompson S, Parker A C, Maddy A. Human erythrocyte fractionation in “PERCOLL” density gradients.  Clin Chim Acta. 1979;  98 119-125
  • 25 Schmidt W, Maasen N, Trost F, Boning D. Training induced effects on blood volume, erythrocyte turnover and haemoglobin oxygen binding properties.  Eur J Appl Physiol. 1988;  57 490-498
  • 26 Skelton M S, Kremer D E, Smith E W, Gladden L B. Lactate influx into red blood cells from trained and untrained human subjects.  Med Sci Sports Exerc. 1998;  30 536-542
  • 27 Skelton M S, Kremer D E, Smith E W, Gladden L B. Lactate influx into red blood cells in athletic and nonathletic species.  Am J Physiol Regulatory Integrative Comp Physiol. 1995;  268 1121-1128
  • 28 Smith E W, Skeleton M S, Kremer D E, Pascoe D D, Gladden L B. Lactate distribution in the blood during progressive exercise.  Med Sci Sport Exerc. 1997;  29 654-660
  • 29 Smith E W, Skeleton M S, Kremer D E, Pascoe D D. Lactate distribution in the blood during steady-state exercise.  Med Sci Sport Exerc. 1998;  30 1424-1429
  • 30 Smith J A, Telford R D, Kolbuch-Braddon M K, Weidemann M J. Lactate/H+ uptake by red blood cells during exercise alters their physical properties.  Eur J Appl Physiol. 1997;  75 54-61
  • 31 Suzuki M, Saitoh S, Yashiro M, Harui J. Dietary effects on liver and muscle glycogen relation in exhaustively exercised rats' energy composition and type of complex carbohydrates.  J Nutr Sci Vitaminol. 1984;  30 453-466
  • 32 Vaihkonen L K, Heinonen O J, Hyyppa S, Nieminen M, Poso A R. Lactate-transport activity in RBCs of trained and untrained individuals from four racing species.  Am J Physiol Regul Integr Comp Physiol. 2001;  281 19-24

Wataru Aoi

First Department of Internal Medicine, Kyoto Prefectural University of Medicine

Kyoto 602-8566


Phone: + 81752515505

Fax: + 8 17 52 52 37 21