Int J Sports Med 2004; 25(5): 384-390
DOI: 10.1055/s-2004-815839
Orthopedics & Biomechanics

© Georg Thieme Verlag KG Stuttgart · New York

Bone Mineral Density in Hispanic Women: Role of Aerobic Capacity, Fat-Free Mass, and Adiposity

A. Afghani1 , A. V. Abbott2 , R. A. Wiswell3 , S. V. Jaque4 , C. Gleckner5 , E. T. Schroeder3 , C. A. Johnson1
  • 1Institute for Prevention Research, Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
  • 2Department of Family Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
  • 3Department of Biokinesiology, University of Southern California, Los Angeles, CA, USA
  • 4Department of Kinesiology, California State University, Northridge, CA, USA
  • 5Department of Fitness & Wellness, Cerritos College, Cerritos, CA, USA
Further Information

Publication History

Accepted after revision: August 30, 2003

Publication Date:
18 May 2004 (online)


Understanding the etiology of factors influencing bone mineral density (BMD) in Hispanic women for the prevention of osteoporosis was the aim of this investigation. Whole body BMD (WBBMD) of 39 Hispanic, premenopausal women aged 22 - 51 years was measured using dual-energy X-ray absorptiometry (DXA). Maximal aerobic capacity (V·O2max) was determined by treadmill ergometry with direct measurement of oxygen consumption. Fat-free mass (FFM) and fat mass were estimated from two independent techniques, DXA and bioelectrical impedance analysis (BIA). A questionnaire was administered to determine weekly physical activity, age of menarche, oral contraceptive (OC) use, parity, and lactation. Factors with significant correlation to WBBMD were weight (r = 0.74), body mass index (r = 0.66), fat mass (r = 0.68 - 0.69), FFM (r = 0.55 - 0.65), percent fat (r = 0.43 - 0.55), sagittal diameter (r = 0.58), waist circumference (r = 0.53), hip circumference (r = 0.66) and weekly activity (r = 0.40). Stepwise multiple linear regression revealed that 73 % of the variance in WBBMD is attributed to fat mass (55 %), FFM (10 %), and V·O2max (8 %). When BIA was used instead of DXA in the regression, V·O2max was no longer an independent predictor of WBBMD. Fat mass and FFM accounted for 43 % and 20 % of the variance in WBBMD, respectively, explaining a total of 63 % of the variance. The addition of age, age of menarche, weekly physical activity, OC use, parity, and lactation did not make significant contributions to the variance. The findings of this study suggest that fat mass is a stronger predictor of bone mineral density than fat-free mass to BMD; aerobic capacity is another important predictor of BMD in Hispanic premenopausal women.


  • 1 Afghani A, Xie B, Wiswell R A, Gong J, Li Y, Johnson C A. Bone mass of Asian adolescents in China: Influence of physical activity and smoking.  Med Sci Sports Exerc. 2003;  35 720-729
  • 2 Bennell K, White S, Crossley K. The oral contraceptive pill: a revolution for sportswomen?.  Brit J Sports Med. 1999;  33 231-238
  • 3 Bevier W C, Wiswell R A, Pyka G, Kozak K C, Newhall K M, Marcus R. Relationship of body composition, muscle strength, and aerobic capacity to bone mineral density in older men and women.  J Bone Miner Res. 1989;  4 421-432
  • 4 Crespo C J. Challenges and barriers to research using minority participants. Symposium conducted at the 50th annual meeting of the American College of Sports Medicine (ACSM), San Francisco, California. May/2003
  • 5 Davies C T, Godfrey S, Light M, Sargeant A J, Zeidifard E. Cardiopulmonary responses to exercise in obese girls and young women.  J Appl Physiol Res Env Exerc Physiol. 1975;  38 373-376
  • 6 Despres J P, Prud'homme D, Pouliot M C, Tremblay A, Bouchard C. Estimation of deep abdominal adipose-tissue accumulation from simple anthropometric measurements in men.  Am J Clin Nutr. 1991;  54 471-477
  • 7 Edelstein S L, Barrett-Connor E. Relation between body size and bone mineral density in elderly men and women.  Am J Epidemiol. 1993;  138 160-169
  • 8 Eliakim A, Ish-Shalom S, Giladi A, Falk B, Constantini N. Assessment of body composition in ballet dancers: Correlation among anthropometric measurements, bio-electrical impedance analysis, and dual-energy X-ray absorptiometry.  Int J Sports Med. 2000;  8 598-601
  • 9 Ellis K J, Abrams S A, Wong W W. Body composition of a young, multiethnic female population.  Am J Clin Nutr. 1997;  65 724-731
  • 10 Emslander H C, Sinaki M, Muhs J M, Chao E YS, Wahner H W, Bryant S C, Riggs B L, Eastell R. Bone mass and muscle strength in female college athletes (runners and swimmers).  Mayo Clin Proc. 1998;  73 1151-1160
  • 11 Fehling P C, Alekel L, Clasey J, Rector A, Stillman R J. A comparison of bone mineral densities among female athletes in impact loading and active loading sports.  Bone. 1995;  17 205-210
  • 12 Friedenreich C M, Courneya K S, Bryant H E. Relation between intensity of physical activity and breast cancer risk reduction.  Med Sci Sports Exerc. 2001;  33 1538-1545
  • 13 Goran M I, Kaskoun M C, Carpenter W H, Poehlman E T, Ravussin E, Fontvieille A M. Estimating body composition in young children using bioelectrical resistance.  J Appl Physiol. 1993;  75 1776-1780
  • 14 Goran M I, Abu Khaled M. Cross-validation of fat-free mass estimated from body density against bioelectrical resistance: effects of obesity and gender.  Obes Res. 1995;  3 531-539
  • 15 Hu F B, Stampfer M J, Colditz G A, Ascherio A, Rexrode K M, Willett W C, Manson J E. Physical activity and risk of stroke in women.  JAMA. 2000;  283 2961-2967
  • 16 Irwin M L, Mayer-Davis E J, Addy C L, Pate R R, Durstine J L, Stolarczyk L M, Ainsworth B E. Moderate-intensity physical activity and fasting insulin levels in women: the Cross-Cultural Activity Participation Study.  Diabetes Care. 2000;  23 449-454
  • 17 Khosla S, Atkinson E J, Riggs B L, Melton L J. III Relationship between body composition and bone mass in women.  J Bone Miner Res. 1996;  11 857-863
  • 18 Kohrt W M, Ehsani A A, Birge Jr S J. Effects of exercise involving predominantly either joint-reaction or ground-reaction forces on bone mineral density in older women.  J Bone Miner Res. 1997;  12 1253-1261
  • 19 Kushner R F, Schoeller D A, Fjeld C R, Danford L. Is the impedance index (ht2/R) significant in predicting total body water?.  Am J Clin Nutr. 1992;  56 835-839
  • 20 Lee I M, Sesso H D, Paffenbarger Jr R S. Physical activity and risk of lung cancer.  Int J Epi. 1999;  28 620-625
  • 21 Lee I M, Rexrode K M, Cook N R, Manson J E, Buring J E. Physical activity and coronary heart disease in women: is “no pain, no gain” passé?.  JAMA. 2001;  285 1447-1454
  • 22 Liel Y, Edwards J, Shary J, Spicer K M, Gordon L, Bell N H. The effects of race and body habitus on bone mineral density of the radius, hip, and spine in premenopausal women.  J Clin Endocrin Metab. 1988;  66 1247-1250
  • 23 Lloyd T, Taylor D S, Lin H M, Mattews A E, Eggli D F, Legro R S. Oral contraceptive use by teenage women does not affect peak bone mass: a longitudinal study.  Fertil Steril. 2000;  74 734-738
  • 24 Lohman T G, Roche A F, Martorell R. (Eds) .Anthropometric Standardization Reference Manual. Champaign, IL; Human Kinetics 1988
  • 25 Looker A C, Johnston Jr C C, Wahner H W, Dunn W L, Calvo M S, Harris T B, Heyse S P, Lindsay R L. Prevalence of low femoral bone density in older U. S. women from NHANES III.  J Bone Miner Res. 1995;  10 796-802
  • 26 Matsumine H, Hirato K, Yanaihara T, Tamada T, Yoshida M. Aromatization by skeletal muscle.  J Clin Endocrinol Metab. 1986;  63 717-720
  • 27 McKenzie T L, Sallis J F, Nader P R, Broyles S L, Nelson J A. Anglo- and Mexican-American preschoolers at home and at recess: Activity patterns and environmental influences.  J Dev Behav Pediat. 1992;  13 173-180
  • 28 Michaelsson K, Baron J A, Farahmand B Y, Ljunghall S. Influence of parity and lactation on hip fracture risk.  Am J Epidemiol. 2001;  153 1166-1172
  • 29 Reid I R, Legge M, Stapleton J P, Evans M C, Grey A B. Regular exercise dissociates fat mass and bone density in premenopausal women.  J Clin Endocrinol Metab. 1995;  80 1764-1768
  • 30 Ryan A S, Elahi D. Loss of bone mineral density in women athletes during aging.  Calcif Tissue Int. 1998;  63 287-292
  • 31 Schindler A E, Ebert A, Friedrich E. Conversion of androstenedione to estrone by human fat tissue.  J Clin Endocrinol Metab. 1972;  35 627-630
  • 32 Shavers V L, Lynch C F, Burmeister L F. Racial differences in factors that influence the willingness to participate in medical research studies.  Ann Epidemiol. 2002;  12 248-256
  • 33 Teran L M, Belkic K L, Johnson C A. An exploration of psychosocial determinants of obesity among Hispanic women.  Hisp J Beh Sci. 2002;  24 92-103
  • 34 Thune I, Furberg A S. Physical activity and cancer risk: dose-response and cancer, all sites and site-specific.  Med Sci Sports Exerc. 2001;  33 530-550
  • 35 U. S. Bureau of Census .Current Population Report - 2000. Washington, DC; U. S. Department of Commerce 2000
  • 36 Villa M L, Marcus R, Ramirez Delay R, Kelsey J L. Factors contributing to skeletal health of postmenopausal Mexican-American women.  J Bone Miner Res. 1995;  10 1233-1242
  • 37 Weaver C M, Teegarden D, Lyle R M, McCabe G P, McCabe L D, Proulx W, Kern M, Sedlock D, Anderson D D, Hillberry B M, Peacock M, Johnston C C. Impact of exercise on bone health and contraindication of oral contraceptive use in young women.  Med Sci Sports Exerc. 2001;  33 873-880

Associate Professor Ph.D., M.P.H. Afrooz Afghani

College of Health Sciences · Touro University International

5665 Plaza Drive, Third Floor

Cypress, CA 90630


Phone: + 71422698402009

Fax: + 71 42 26 98 44