Horm Metab Res 2004; 36(5): 319-335
DOI: 10.1055/s-2004-814489
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

The Role of Nitric Oxide in the Development of Diabetic Angiopathy

F.  Santilli1 , F.  Cipollone1 , A.  Mezzetti1 , F.  Chiarelli1
  • 1Departments of Medicine and Pediatrics, University of Chieti, Italy
Weitere Informationen

Publikationsverlauf

Received 9 April 2003

Accepted after Revision 3 December 2003

Publikationsdatum:
24. Mai 2004 (online)

Abstract

Diabetic angiopathy is the main cause of morbidity and mortality in patients with diabetes mellitus. Clinical manifestations and pathophysiological mechanisms of diabetic angiopathy can be traced back to the development of endothelial cell dysfunction with alterations in the eNOS/NO system production or availability as the primum movens in its natural history. Hyperglycemia per se or through the accumulation of AGEs, increased oxidative stress, leading to NOS uncoupling and NO-quenching by excess superoxide and peroxynitrite, and individual genetic background are thought to be responsible for this NO metabolism imbalance. The complex interplay of these mechanisms results in a perturbation of the physiological properties of NO in the maintenance of endothelial homeostasis, such as vasodilation, anticoagulation, leukocyte adhesion, smooth muscle cell proliferation, and antioxidant capacity. Hence, abnormality in NO availability results in generalized accelerated atherosclerosis, hyperfiltration, glomerulosclerosis, tubulointerstitial fibrosis and progressive decline in glomerular filtration rate, and apoptosis and neovascularization in the retina. Indeed, the parallel development of nephropathy, retinopathy, and macroangiopathy may be considered as manifestations of endothelial dysfunction at distinct vascular sites. Given this scenario, intervention targeting any of the pathways involved in the NOS/NO system cascade may prove potential therapeutic targets in the prevention of long-term diabetic complications.

References

  • 1 Head J, Fuller J H. International variations in mortality among diabetic patients: the WHO Multinational Study of Vascular disease in diabetics.  Diabetologia. 1990;  24 336-341
  • 2 Dorman J S, Laporte R E, Kuller L H, Cruickshanks K J, Orchard T J, Wagener D K, Becker D J, Cavender D E, Drash A L. The Pittsburgh insulin-dependent diabetes mellitus (IDDM) morbidity and mortality study. Mortality results.  Diabetes. 1984;  33 271-276
  • 3 Stehouwer C DA, Lambert J, Donker A JM, van Hinsbergh V WM. Endothelial dysfunction and pathogenesis of diabetic angiopathy.  Cardiovasc Res. 1997;  34 55-68
  • 4 Reddy K G, Nair R, Sheehan H, Hodgson J. Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis.  J Am Coll Cardiol. 1994;  23 833- 843
  • 5 Quyiumi A A, Dakak N, Andrews N, Hussain S, Arora S, Gilligan D, Panza J A. Nitric oxide activity in the human coronary circulation: impact of risk factors for coronary atherosclerosis.  J Clin Invest. 1995;  95 1747-1753
  • 6 Dzau V J, Gibbons G H, Mann M, Braun-Dullaeus R. Future horizons in cardiovascular molecular therapies.  Am J Cardiol. 1997;  80 (9A) 33-39
  • 7 Bell D, Johns T E, Lopez L M. Endothelial dysfunction: implications for therapy of cardiovascular diseases.  Ann Pharmacother. 1998;  32 459-470
  • 8 Ludmer P L, Selwyn A P, Shook L T, Wayne R R, Mudge G H, Alexander R W, Ganz P. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries.  N Engl J Med. 1986;  315 1046 -1051
  • 9 Moncada S, Palmer R M, Higgs E A. Nitric oxide: physiology, pathophysiology, and pharmacology.  Pharmacol Rev. 1991;  43 109-142
  • 10 Leibovich S J, Polverini P J, Fong T W, Harlow L A, Koch A E. Production of angiogenic activity by human monocytes requires an L-arginine/nitric oxide-synthase-dependent effector mechanism.  Proc Natl Acad Sci USA. 1994;  91 4190-4194
  • 11 Kubes P, Suzuki M, Granger D N. Nitric oxide: an endogenous modulator of leukocyte adhesion.  Proc Natl Acad Sci USA. 1991;  88 4651- 4655
  • 12 Niu X, Smith C W, Kubes P. Intracellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils.  Circ Res. 1994;  74 1133-1140
  • 13 Dubey R, Jackson E, Luscher T F. Nitric oxide inhibits angiotensin II-induced migration of rat aortic smooth muscle cells.  J Clin Invest. 1995;  96 141-149
  • 14 Garg U C, Hassid A. Nitric oxide-generating vasodilators and 8-bromocyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells.  J Clin Invest. 1989;  83 1774-1777
  • 15 Von der Leyen H, Gibbons G, Morishita R, Lewis N, Zhang L, Nakajima M, Kaneda Y, Cooke J, Dzau V J. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene.  Proc Natl Acad Sci USA. 1995;  92 1137-1141
  • 16 Cines D B, Pollak E, Buck C A, Loscalzo J, Zimmerman G A, McEver R P, Pober J S, Wick T M, Konkle B A, Schwartz B S, Barnathan E S, McCrae K R, Hug B A, Schmidt A-M, Stern D M. Endothelial cell in physiology and in the pathophysiology of vascular disorders.  Blood. 1998;  91 3527-3561
  • 17 Kanner J, Harel S, Granit R. Nitric oxide as an antioxidant.  Arc Biochem Biophys. 1991;  289 130-136
  • 18 Griffith T M, Edwards D H, Lewis M G, Newby A C, Henderson A H. The nature of endothelium-derived vascular relaxant factor.  Nature. 1984;  308 645-647
  • 19 Poston L, Taylor P D. Endothelium-mediated vascular function in insulin-dependent diabetes mellitus.  Clin Sci. 1995;  3 245-255
  • 20 Huvers F C, de Leeuw P W, Houben A J, de Haan C H, Hamulyak K, Schouten H, Wolffenbuttel B H, Schaper N C. Endothelium-dependent vasodilatation, plasma markers of endothelial function, and adrenergic vasoconstrictor responses in type 1 diabetes under near-normoglycemic conditions.  Diabetes. 1999;  48 1300-1307
  • 21 Johnstone M T, Creager S J, Scales K M, Cusco J A, Lee B K, Creager M A. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus.  Circulation. 1993;  88 2510-2516
  • 22 Lambert J, Aarsen M, Donker A J, Stehouwer C D. Endothelium-dependent and -independent vasodilation of large arteries in normoalbuminuric insulin-dependent diabetes mellitus.  Arterioscler Thromb Vasc Biol. 1996;  16 705-711
  • 23 Morris B J, Markus A, Glenn C L, Adams D J, Colagiuri D, Wang L. Association of a functional inducible nitric oxide synthase promoter variant with complications in type 2 diabetes.  J Mol Med. 2002;  80 96-104
  • 24 Steinberg H O, Brechtel G, Johnson A, Fineberg N, Baron A D. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release.  J Clin Invest. 1994;  94 1172-1179
  • 25 Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans.  J Clin Invest. 1994;  94 2511-2515
  • 26 Grover A, Padginton C, Wilson M F, Sung B H, Izzo J L Jr, Dandona P. Insulin attenuates norepinephrine-induced venoconstriction. An Ultrasonographic Study.  Hypertension. 1995;  25 779-784
  • 27 Zeng G, Quon M J. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurements in vascular endothelial cells.  J Clin Invest. 1996;  98 894-898
  • 28 Aljada A, Dandona P. Effect of insulin on human aortic endothelial nitric oxide synthase.  Metabolism. 2000;  49 147-150
  • 29 Laakso M, Edelman S V, Brechtel G, Baron A D. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance.  J Clin Invest. 1990;  85 1844-1852
  • 30 Laakso M, Edelman S V, Brechtel G, Baron A D. Impaired insulin-mediated skeletal muscle bloodflow in patients with NIDDM.  Diabetes. 1992;  41 1076-1083
  • 31 Baron A D, Brechtel-Hook G, Johnson A, Hardin D. Skeletal muscle blood flow. A possible link between insulin resistance and blood pressure.  Hypertension. 1993;  21 129-135
  • 32 Baron A D, Brechtel G. Insulin differentially regulates systemic and skeletal muscle vascular resistance.  Am J Physiol. 1993;  265 E61-E67
  • 33 Zeng G, Nystrom F H, Ravichandran L V, Cong L N, Kirby M, Mostowski H, Quon M. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells.  Circulation. 2000;  101 1539-1545
  • 34 Kuboki K, Jiang Z Y, Takahara N, Ha S W, Igarashi M, Yamauchi T, Feener E P, Herbert T P, Rhodes C J, King G L. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin.  Circulation. 2000;  101 676-681
  • 35 Weisbrod R M, Brown M L, Cohen R A. Effect of elevated glucose on cyclic GMP and eicosanoid produced by porcine aortic endothelium.  Arterioscler. Thromb1993;  13 915-923
  • 36 Giugliano D, Marfella R, Coppola L, Verazzo G, Acampora R, Giunta R, Nappo F, Lucarelli C, D’Onofrio F. Vascular effects of acute hyperglycemia in humans are reversed by L-arginine: evidence for reduced availability of nitric oxide during hyperglycemia.  Circulation. 1997;  95 1783-1790
  • 37 Bucala R, Trace Y KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilation in experimental diabetes.  J Clin Invest. 1991;  87 432- 438
  • 38 Kojda G, Harrison D. Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure.  Cardiovasc Res. 1999;  43 562-571
  • 39 Cai H, Harrison D G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress.  Circ Res. 2000;  87 840-844
  • 40 Thomson L, Trujillo M, Telleri R, Radi R. Kinetics of cytochrome c21 oxidation by peroxynitrite: implications for superoxide measurements in nitric oxide-producing biological systems.  Arch Biochem Biophys. 1995;  319 491- 497
  • 41 Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl R A, Warnholtz A, Meinertz T, Griendling K, Harrison D G, Forstermann U, Munzel T. Mechanisms underlying endothelial dysfunction in diabetes mellitus.  Circ Res. 2001;  88 e14-e22
  • 42 Shinozaki K, Kashiwagi A, Nishio Y, Okamura T, Yoshida Y, Masada M, Toda N, Kikkawa R. Abnormal biopterin metabolism is a major cause of impaired endothelium-dependent relaxation through nitric oxide/O2-imbalance in insulin-resistant rat aorta.  Diabetes. 1999;  48 2437-2445
  • 43 Pieper G M. Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor, tetrahydrobiopterin.  J Cardiovasc Pharmacol. 1997;  29 8-15
  • 44 Meininger C J, Marinos R S, Hatakeyama K, Martinez-Zaguilan R, Rojas J D, Kelly K A, Wu G. Impaired nitric oxide production in coronary endothelial cells of the spontaneously diabetic BB rat is due to tetrahydrobiopterin deficiency.  Biochem J. 2000;  349 353-356
  • 45 Munzel T, Li H, Mollnau H, Hink U, Matheis E, Hartmann M, Oelze M, Skatchkov M, Warnholtz A, Duncker L, Meinertz T, Forstermann U. Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III-mediated superoxide production, and vascular NO bioavailability.  Circ Res. 2000;  86 e7-e12
  • 46 Cosentino F, Hishikawa K, Katusic Z S, Luscher T F. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells.  Circulation. 1997;  96 25-28
  • 47 Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leukocytes.  J Clin Endocrinol Metab. 2000;  85 2970-2973
  • 48 Mohanty P, Ghanim H, Hamouda W, Aljada A, Garg R, Dandona P. Both lipid and protein intake stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells.  Am J Clin Nutr. 2002;  75 767-772
  • 49 Milson A B, Jones C J, Goodfellow J, Frenneaux M P, Peters J R, James P E. Abnormal metabolic fate of nitric oxide in type 1 diabetes mellitus.  Diabetologia. 2002;  45 1515-1522
  • 50 Ruggenenti P, Remuzzi G. Nephropathy of type-2-diabetes mellitus.  J Am Soc Nephrol. 1998;  9 2157-2169
  • 51 Mogensen C E. Microalbuminuria, blood pressure and diabetic renal disease: origin and development of ideas.  Diabetologia. 1999;  42 263-285
  • 52 Adler S. Structure-function relationships associated with extracellular matrix alterations in diabetic glomerulopathy.  J Am Soc Nephrol. 1994;  5 1165-1172
  • 53 Ziyadeh F N. Significance of tubulointerstitial changes in diabetic renal disease.  Kidney Int. 1996;  54 10 -13
  • 54 Deckert T, Yokoyama H, Mathiesen E, Ronn B, Jensen T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen J S. Cohort study of predictive value of urinary albumin excretion for atherosclerotic vascular disease in patients with insulin dependent diabetes.  BMJ. 1996;  312 871-874
  • 55 Deckert T, Poulsen J E, Larsen M. Prognosis of diabetics with diabetes onset before the age of 31: survival, causes of death and complications.  Diabetologia. 1978;  14 363-370
  • 56 The DCCT Research Group . The effect of intensive diabetes treatment on the development and progression of long-term complications in insulin-dependent diabetes mellitus: the Diabetes Control and Complications Trial.  N Engl J Med. 1993;  329 977-986
  • 57 Corbett J A, Tilton R G, Chang K, Hassan K S, Ido Y, Wang J L, Sweetland M A, Lancaster J R, Williamson J R, McDaniel M L. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction.  Diabetes. 1992;  41 552-556
  • 58 Graier W F, Wascher T C, Lackner L, Toplak H, Krejs G J, Kukovetz W R. Exposure to elevated D-glucose concentrations modulates vascular endothelial cell vasodilatory response.  Diabetes. 1993;  42 1497-1505
  • 59 Pugliese G, Tilton R G, Williamson J R. Glucose-induced metabolic imbalances in the pathogenesis of diabetic vascular disease.  Diabetes Metab Rev. 1991;  7 35-59
  • 60 Tolins P, Shultz P J, Raij L, Brown D M, Mauer S M. Abnormal renal hemodynamic response to reduced renal perfusion in diabetic rats: role of NO.  Am J Physiol. 1993;  265 F886-F895
  • 61 Reyes A A, Karl I E, Kissane J, Klahr S. L-arginine administration prevents glomerular hyperfiltration and decreases proteinuria in diabetic rats.  J Am Soc Nephrol. 1993;  4 1039-1045
  • 62 Bank N, Aynedjian H S. Role of EDRF (nitric oxide) in diabetic renal hyper-filtration.  Kidney Int. 1993;  43 1306-1312
  • 63 Tolins J P, Palmer R MJ, Moncada S, Raij L. Role of endothelium-derived relaxing factor in regulation of renal hemodynamic responses.  Am J Physiol. 1990;  258 H655-H662
  • 64 Nathan C, Xie Q W. Regulation of biosynthesis of nitric oxide.  J Biol Chem. 1994;  269 13 725-13 728
  • 65 Kone B C, Baylis C. Biosynthesis and homeostatic roles of nitric oxide in the normal kidney.  Am J Physiol. 1997;  272 F561-F578
  • 66 Choi K C, Kim N H, An M R, Kang D G, Kim S W, Lee J. Alterations of intrarenal renin-angiotensin and nitric oxide systems in streptozotocin-induced diabetic rats.  Kidney Int Suppl. 1997;  60 S23-S27
  • 67 Ishii N, Patel K P, Lane P H, Taylor T, Bian K, Murad F, Pollock J S, Carmines P K. Nitric oxide synthesis and oxidative stress in the renal cortex of rats with diabetes mellitus.  J Am Soc Nephrol. 2001;  12 1630-1639
  • 68 Schwartz D, Schwartz I F, Blantz R C. An analysis of renal nitric oxide contribution to hyperfiltration in diabetic rats.  J Lab Clin Med. 2001;  137 107-114
  • 69 Sugimoto H, Shikata K, Wada J, Horiuchi S, Makino H. Advanced glycation end-products-cytokine-nitric oxide sequence pathway in the development of diabetic nephropathy: aminoguanidine ameliorates the overexpression of tumour necrosis factor-alpha and inducible nitric oxide sinthase in diabetic rat glomeruli.  Diabetologia. 1999;  42 878-886
  • 70 Veelken R, Hilgers K F, Hartner A. Nitric oxide synthase isoforms and glomerular hyperfiltration in early diabetic nephropathy.  J Am Soc Nephrol. 2000;  11 71-79
  • 71 Trachtman H, Futterweit S, Pine E, Mann J, Valderrama E. Chronic diabetic nephropathy: role of inducible nitric oxide synthase.  Pediatric Nephrol. 2002;  17 20-29
  • 72 Noh H, Ha H, Yu M R, Kang S W, Choi K H, Han D S, Lee H Y. High glucose increases inducible NO production in cultured rat mesangial cells. Possible role in fibronectin production.  Nephron. 2002;  90 78-85
  • 73 Sugimoto H, Shikata K, Matsuda M, Hayashi Y, Hiragushi K, Wada J, Makino H. Increased expression of endothelial cell nitric oxide synthase (ecNOS) in afferent and glomerular endothelial cells is involved in glomerular hyperfiltration of diabetic nephropathy.  Diabetologia. 1998;  41 1426-1434
  • 74 Komers R, Allen T J, Cooper M E. Role of endothelium-derived nitric oxide in the pathogenesis of the renal hemodynamic changes of experimental diabetes.  Diabetes. 1994;  43 1190-1197
  • 75 Tilton R G, Ghang K, Hasan K S, Smith S R, Petrash J M, Misko T P, Moore W M, Currie M G, Corbett J A, McDaniel M L, Williamson J R. Prevention of diabetic vascular dysfunction by guanidines: inhibition of nitric oxide synthase vs. advanced glycation end-product formation.  Diabetes. 1993;  42 221-232
  • 76 Pieper G M, Dembdy K, Siebeneich W. Long-term treatment in vivo with NOX-101, a scavenger of nitric oxide, prevents diabetes-induced endothelial dysfunction.  Diabetologia. 1998;  41 1220-1226
  • 77 Mattar A L, Fujihara C K, Ribeiro M O, de Nucci G, Zatz R. Renal effects of acute and chronic nitric oxide inhibition in experimental diabetes.  Nephron. 1996;  74 136-143
  • 78 De Vriese A S, Stoenoiu M S, Elger M, Devuyst O, Vanholder R, Kriz W, Lameire N H. Diabetes-induced microvascular dysfunction in the hydronephrotic kidney: role of nitric oxide.  Kidney Int. 2001;  60 202-210
  • 79 Hiragushi K, Sugimoto H, Shikata K, Yamashita T, Miyatake N, Hikata Y, Wada J, Kumagai I, Fukushima M, Makino H. Nitric oxide system is involved in glomerular hyperfiltration in Japanese normo- and microalbuminuric patients with type 2 diabetes.  Diabetes Res Clin Pract. 2001;  53 149-159
  • 80 Marletta M A, Yoon P S, Iyengar R, Leaf C D, Wishnok J S. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate.  Biochemistry. 1988;  27 8706-8711
  • 81 Rosselli M, Imthurn B, Keller P J, Jackson E K, Dubey R K. Circulating nitric oxide (nitrite/nitrate) levels in postmenopausal women substituted with 17-estradiol and norethisterone acetate.  Hypertension. 1995;  25 (Part 2) 848-853
  • 82 Chiarelli F, Cipollone F, Romano F, Tumini S, Costantini F, di Ricco L, Pomilio M, Pierdomenico S D, Marini M, Cuccurullo F, Mezzetti A. Increased circulating nitric oxide in young patients with type 1 diabetes and persistent microalbuninuria.  Diabetes. 2000;  49 1258-1263
  • 83 Noh H, Ha H, Yu M R, Kang S W, Choi K H, Han D S, Lee H Y. High glucose increases inducible NO production in cultured rat mesangial cells. Possible role in fibronectin production.  Nephron. 2002;  90 78-85
  • 84 Tilton R G, Chang K C, Lejeune W S, Stephan C C, Brock T A, Williamson J R. Role of nitric oxide in the hyperpermeability and haemodinamic changes induced by intravenous VEGF.  Invest Ophthalmol Vis Sci. 1999;  40 689-696
  • 85 Cooper M E, Vranes D, Youssef S, Stacker S A, Cox A J, Rizkalla B, Casley D J, Bach L A, Kelly D J, Gilbert R E. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes.  Diabetes. 1999;  42 579-588
  • 86 De Vriese A S, Tilton R G, Elger M, Stephan C C, Kriz W, Lameire N H. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes.  J Am Soc Nephrol.. 2001;  12 993-1000
  • 87 Craven P A, Studer R K, DeRubertis F R. Impaired NO - dependent cyclic GMP generation in glomeruli from diabetic rats: Evidence for protein kinase C-mediated suppression of the cholinergic response.  J Clin Invest. 1994;  93 311-320
  • 88 Craven P A, Studer R K, DeRubertis F R. Impaired nitric oxide release by glomeruli from diabetic rats.  Metabolism. 1995;  44 695-698
  • 89 Mc Veigh G E, Brennan G M, Johnstone G D, Mc Dermott B J, Mc Grath L T, Henry W R, Andrews J W, Hayes J R. Impaired endothelium-dependent vasodilation in patients with type 2 diabetes mellitus.  Diabetologia. 1992;  35 771-776
  • 90 Tesfamariam B, Cohen R A. Free radicals mediate endothelial cell dysfunction caused by elevated glucose.  Am J Physiol. 1992;  263 H321-H326
  • 91 Schnackenberg C G, Welch W J, Wilcox C S. TP receptor-mediated vasoconstriction in microperfused afferent arterioles: roles of O2- and NO.  Am J Physiol Renal Physiol. 2000;  279 F302- F308
  • 92 Ohishi K, Carmines P K. Superoxide dismutase restores the influence of nitric oxide on renal arterioles in diabetes mellitus.  J Am Soc Nephrol. 1995;  5 1559-1566
  • 93 Dai F, Diederich A, Skopec J, Diederich D. Diabetes-induced endothelial dysfunction in streptozotocin-treated rats: role of prostaglandin endoperoxides and free radicals.  J Am Soc Nephrol. 1993;  4 1327-1336
  • 94 Schoonmaker G C, Fallet R W, Carmines P K. Superoxide anion curbs nitric oxide modulation of afferent arteriolar Ang II responsiveness in diabetes mellitus.  Am J Physiol Renal Physiol. 2000;  278 F302-F309
  • 95 Eddy A A. Molecular insights into renal interstitial fibrosis.  J Am Soc Nephrol. 1996;  7 2495-2508
  • 96 Baylis C, Mitruka B, Deng A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage.  J Clin Invest. 1992;  90 278-281
  • 97 Fujihara C K, Denucci G, Zatz R. Chronic nitric oxide synthesis inhibition aggravates glomerular injury in rats with subtotal nephrectomy.  J Am Soc Nephrol. 1995;  5 1498-1507
  • 98 MacKay K, Kondaiah P, Danielpour D, Austin H A III, Brown P D. Expression of transforming growth factor ß1 and ß2 in rat glomeruli.  Kidney Int. 1990;  38 1095-1100
  • 99 Studer R K, DeRubertis F R, Craven P A. Nitric oxide suppresses increases in mesangial cell protein kinase C, transforming growth factor ß and fibronectin synthesis induced by thromboxane.  J Am Soc Nephrol. 1996;  7 999-1005
  • 100 Baylis C, Harvey J, Engels K. Acute nitric oxide blockade amplifies the renal vasoconstrictor actions of angiotensin II.  J Am Soc Nephrol. 1994;  5 211-214
  • 101 Kubes P, Granger D N. Nitric oxide modulates vascular permeability.  Am J Physiol. 1992;  262 H611-H615
  • 102 Witte M B, Kiyama T, Barbul A. Nitric oxide enhances experimental wound healing in diabetes.  Br J Surg. 2002;  89 1594-601
  • 103 Clancy R M, Leszczynska P, Piziak J, Abramson S B. Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on NADPH oxidase.  J Clin Invest. 1992;  90 1116-1121
  • 104 Hogg N, Kalyanaraman B, Josef J, Struck A, Parthasarathy S. Inhibition of low density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis.  FEBS Lett. 1993;  34 170-174
  • 105 Kourembanas S, McQuillan L P, Leung G K, Faller D V. Nitric oxide regulates the expression of vasocontrictors and growth factors by vascular endothelium under both normoxia and hypoxia.  J Clin Invest. 1993;  92 99-104
  • 106 Kaikita K, Fogo A B, Ma L, Schoenhard J A, Brown N J, Vaughan D E. Plasminogen activator inhibitor-1 deficiency prevents hypertension and vascular fibrosis in response to long-term nitric oxide synthase inhibition.  Circulation . 2001;  104 839-44
  • 107 Neugebauer S, Baba T, Watanabe T. Association of the nitric oxide synthase gene polymorphism with an increased risk for progression to diabetic nephropathy in type 2 diabetes.  Diabetes. 2000;  49 500-503
  • 108 Johannesen J, Tarnow L, Parving H H, Nerup J, Pociot F. CCTTT-repeat polymorphism in the human NOS2-promoter confers low risk of diabetic nephropathy in type 1 diabetic patients.  Diabetes Care. 2000;  19 560-562
  • 109 Tsukada T, Yokoyama K, Arai T, Takemoto F, Hara S, Yamada A, Kawaguchi Y, Hosoya T, Igarashi J. Evidence of association of the ecNOS gene polymorphism with plasma NO metabolite levels in human.  Biochem Biophys Res Commun. 1998;  245 190-193
  • 110 Taniwaki H, Ishimura E, Matsumoto N, Emoto M, Inaba M, Nishizawa Y. Relation between ACE gene and ecNOS gene polimorphisms and resistive index in type 2 diabetic patients with nephropathy.  Diabetes Care. 2001;  24 1653-1660
  • 111 Marsden P A, Heng H HQ, Scherer S W, Stewart R J, Hall A V, Shi X M, Tsui L C, Schappert K T. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene.  J Biol Chem. 1993;  268 17 478-17 488
  • 112 Graham A, Heath P, Morten J EN, Markham A F. The human aldose reductase gene maps to region 7q35.  Hum Genet. 1991;  86 509-514
  • 113 Heesom A E, Hibberd M L, Millward A, Demaine A G. Polymorphism in the 5-end of the aldose reductase gene is strongly associated with the development of diabetic nephropathy in type I diabetes.  Diabetes. 1997;  46 287-291
  • 114 Bonner T I, Modi W S, Seuanez H N, O’Brien S J. Chromosomal mapping of five human genes encoding muscarinic acetylcholine receptors.  Cytogenet Cell Genet. 1991;  58 1850-1851
  • 115 Merimee T J. Diabetic retinopathy. A synthesis of perspectives.  N Engl J Med. 1990;  322 978-983
  • 116 Frank R N. Diabetic retinopathy.  Prog Retin Eye Res. 1995;  14 361-393
  • 117 Becquet F, Courtois Y, Goureau O. Nitric oxide in the eye: multifaceted roles and diverse outcomes.  Surv Ophthalmol. 1997;  42 71-82
  • 118 Yoshida A, Pozdnyakov N, Dang L, Orselli S M, Reddy V N, Sitaramayya A. Nitric oxide synthesis in retinal photoreceptor cells.  Vis Neurosci. 1995;  12 493-500
  • 119 Chakravarthy U, Stitt A W, McNally J. Nitric oxide synthase activity and expression on retinal capillary endothelial cells and pericytes.  Curr Eye Res. 1995;  14 285-294
  • 120 Goureau O, Hicks D, Courtois Y. Nitric oxide decreases in vivo phagocytosis of photoreceptor outer segments by bovine retina pigmented epithelial cells.  J Cell Physiol. 1994;  159 259-262
  • 121 Dighiero P, Reux I, Hauw J J, Fillet A M, Courtois Y, Goureau O. Expression of inducible nitric oxide synthase in cytomegalovirus-infected glial cells of retinas from AIDS patients.  Neurosci Lett. 1994;  166 31-34
  • 122 Goureau O, Bellot J, Thillage B, Courtois Y, de Kozak Y. increased nitric oxide production in endotoxin-induced uveitis.  J Immunol. 1995;  154 6518-6523
  • 123 EL-Asrar A MA, Desmet S, Meersschaert A, Dralands L, Missotten L, Geboes K. Expression of the inducible isoform of nitric oxide synthase in the retinas of human subjects with diabetes mellitus.  Am J Ophthalmol. 2001;  132 551-556
  • 124 Hattenbach L o, Allers A, Klais C, Koch F, Hecker M. L-Arginine-nitric oxide pathway-related metabolites in the aqueous humor of diabetic patients.  Invest Ophthalmol Vis Sci. 2000;  41 213-217
  • 125 Yilmaz G, Esser P, Kociek N, Aydin P, Heimann K. Elevated vitreous nitric oxide levels in patients with proliferative diabetic retinopathy.  Am J Ophthalmol. 2000;  130 87-90
  • 126 Shibuki H, Katai N, Yodoi J, Uchida K, Yoshimura N. Lipid peroxidation and peroxynitrite in retinal ischemia-reperfusion injury.  Invest Ophthalmol Vis Sci. 2000;  19 3607-3614
  • 127 Sugimoto H, Shikata K, Matsuda M, Kushiro M, Hayashi Y, Hiragushi K, Wada J, Makino H. Increased expression of endothelial cell nitric oxide synthase (ecNOS) in afferent and glomerular endothelial cells is involved in glomerular hyperfiltration of diabetic nephropathy.  Diabetologia. 1998;  19 1426-1434
  • 128 Hartnett M E, Stratton R D, Browne R W, Rosner B A, Lanham R J, Armstrong D. Serum markers of oxidative stress and severity of diabetic retinopathy.  Diabetes Care. 2000;  19 234-240
  • 129 Goureau O, Hicks D, Courtois Y. Human retina pigment epithelial cells produce nitric oxide in response to cytokines.  Biochem Biophys Res Comm. 1994;  198 120-126
  • 130 Ziche M, Morbidelli L, Masini E, Amerini S, Granger H J, Maggi C A, Geppetti P, Ledda F. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P.  J Clin Invest. 1994;  94 2036-2044
  • 131 Aiello L P, Wong J S. Role of vascular endothelial growth factor in diabetic vascular complications.  Kidney Int. 2000;  19 S113-119
  • 132 Tilton R G, Chang K C, LeJeune W S, Stephan C C, Brock T A, Williamson J R. Role for nitric oxide in the hyperpermeability and hemodynamic changes induced by intravenous VEGF.  Invest Ophthalmol Vis Sci. 1999;  19 689-696
  • 133 Papapetropoulos A, Garcia-Cardenya G, Madri J A, Sessa W C. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells.  J Clin Invest. 1997;  19 3131-3139
  • 134 Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun C O, Buerk D G, Huang P L, Jain R K. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability.  Proc Natl Acad Sci USA. 2001;  19 2604-2609
  • 135 Brooks S E, Gu X, Samuel S, Marcus D M, Bartoli M, Huang P L, Caldwell R B. Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice.  Invest Ophthalmol Vis Sci. 2001;  19 222-228
  • 136 Sennlaub F, Courtois Y, Goureau O. Inducible nitric oxide synthase mediates the change from retinal to vitreal neovascularization in ischemic retinopathy.  J Clin Invest. 2001;  19 717-725
  • 137 Hernandez C, Lecube A, Segura R M, Sararols L, Simo R. Nitric oxide and vascular endothelial growth factor concentrations are increased but not related in vitreous fluid of patients with proliferative diabetic retinopathy.  Diabet Med. 2002;  19 655-60
  • 138 Bek T. Transretinal histopathological changes in capillary-free areas of diabetic retinopathy.  Acta Ophthalmol. 1994;  72 409-415
  • 139 Palmowski A M, Sutter E E, Bearse Jr M A, Fung W. Mapping of retinal function in diabetic retinopathy using the multifocal electroretinogram.  Invest Opthalmol Vis Sci. 1997;  38 2586-2596
  • 140 Brune B, von Knethen A, Sandau K B. Nitric oxide and its role in apoptosis.  Eur J Pharmacol. 1998;  351 261-272
  • 141 Yamakura F, Taka H, Fujimura T, Murayama K. Inactivation of human manganese-superoxide dismutase by peroxynitrate is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine.  J Biol Chem. 1998;  273 14 085-14 089
  • 142 Mac Millan-Crow L A, Thompson A. Tyrosine modifications and inactivation of active site manganese superoxide dismutase mutant (Y34F) by peroxynitrite.  Arch Biochem Biophys. 1999;  366 82-88
  • 143 Aulak K S, Miyagi M, Yan L, West K A, Massillon D, Crabb J W, Stuehr D J. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge.  Proc Natl Acad Sci USA. 2001;  98 12 056-12 061
  • 144 Bolanos J P, Almeida A, Fernandez E, Medina J M, Land J M, Clark J B, Heales S J. Potental mechanisms for nitric oxide-mediated impairment of brain mitochondrial energy metabolism.  Biochem Soc Trans. 1997;  25 944-949
  • 145 Dawson V L, Brahmbhatt H P, Mong J A, Dawson T M. Expression of inducible nitric oxide synthase causes delayed neurotoxicity in primary mixed neuronal-glial cortical cultures.  Neuropharmacology. 1994;  33 1425-1430
  • 146 Dawson V L, Dawson T M. Nitric oxide neurotoxicity.  J Chem Neuroanat. 1996;  10 179-190
  • 147 Nogawa S, Forster C, Zhang F, Magayama M, Ross M E, Iadecola C. Interaction between inducible nitric oxide sinthase and cycloxygenase-2 after cerebral ischemia.  Proc Natl Acad Sci USA. 1998;  95 10 966-10 971
  • 148 Klein R, Klein B E, Moss S E, Davis M D, DeMets D L. The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years.  Arch Ophthalmol. 1984;  19 520-526
  • 149 Warpeha K M, Xu W, Liu L, Charles I G, Patterson C C, Ah-Fat F, Harding S, Hart P M, Chakravarthy U, Hughes A E. Genotyping and functional analysis of a polymorphism (CCTTT)(n) repeat of NOS2A in diabetic retinopathy.  FASEB J. 1999;  19 1825-1832
  • 150 Taverna M J, Sola A, Guyot-Argenton C, Pacher N, Bruzzo F, Chevalier A, Slama G, Reach G, Selam J L. eNOS4 polymorphism of the endothelial nitric oxide synthase predicts risk for severe diabetic retinopathy.  Diabet Med. 2002;  19 240-5
  • 151 Tsukada T, Yokoyama K, Arai T, Takemoto F, Hara S, Yamada A, Kawaguchi Y, Hosoya T, Igari J. Evidence of association of the ecNOS gene polymorphism with plasma NO metabolite levels in humans.  Biochem Biophys Res Commun. 1998;  19 190-193
  • 152 Kumaramanickavel G, Sripriya S, Vellanki R N, Upadyay N K, Badrinath S S, Rajendran V, Sukumar B, Ramprasad V L, Sharma T. Inducible nitric oxide synthase gene and diabetic retinopathy in Asian Indian patients.  Clin Genet. 2002;  61 344-348
  • 153 Ando A, Yang A, Nambu H, Campochiaro P A. Blockade of nitric-oxide synthase reduces choroidal neovascularization.  Mol Pharmacol. 2002;  62 539-544
  • 154 Hangai M, Miyamoto K, Hiroi K, Tujikawa A, Ogura Y, Honda Y, Yoshimura N. Roles of constitutive nitric oxide synthase in postischemic rat retina.  Invest Ophthalmol Vis Sci. 1999;  40 450-458
  • 155 Parmentier-Batteur S, Bohme G A, Lerouet D, Zhou-Ding L, Beray D, Margaill I. et al . Antisense oligodeoxynucleotide to inducible nitric oxide synthase protects against transient focal cerebral ischemia-induced brain injury.  J Cereb Blood Flow Metab. 2001;  19 15-21
  • 156 Hammes H P, Martin S, Federlin K, Geusen K, Brownlee M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy.  Proc Natl Acad Sci USA. 1991;  88 11 555-11 558
  • 157 Tilton R G, Chang K, Hasan K S, Chang K, Hasan K S, Smith S R, Petrash J M, Misko T P, Moore W M, Currie M G, Corbett J A, McDaniel M L. Prevention of diabetic vascular dysfunction by guanidines.  Inhibition of nitric oxide synthase versus advanced glycation end-product formation Diabetes. 1993;  42 221-232
  • 158 Morrish N J, Stevens L K, Fuller J H, Jarrett R J, Keen H. Risk factors for macrovascular disease in diabetes mellitus: the London follow-up to the WHO Multinational Study of Vascular Disease in Diabetics.  Diabetologia. 1991;  34 590-594
  • 159 Schachinger V, Britten M B, Zeiher A M. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease.  Circulation.. 2000;  101 1899 -1906
  • 160 Rosen P, Du X, Sui G Z. Molecular mechanisms of endothelial dysfunction in the diabetic heart.  Adv Exp Med Biol. 2001;  498 75-86
  • 161 Federici M, Menghini R, Mauriello A, Hribal M L, Ferrelli F, Lauro D, Sbraccia P, Spagnoli L G, Sesti G, Lauro R. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosilation modification of signaling proteins in human coronary endothelial cells.  Circulation. 2002;  106 466-472
  • 162 Adam J M, Ettelaie C, Naseem K M, James N J, Bradley N J, Bruckdorfer K R. Modification of tissue factor by peroxynitrite influences its procoagulant activity.  FEBS Lett 1998;. 16;  429 347-50
  • 163 Napoli C, Lerman L O, de Nigris F, Loscalzo J, Ignarro L J. Glycoxidized low-density lipoprotein downregulates endothelial nitric oxide synthase in human coronary cells.  J Am Coll Cardiol. 2002;  40 1515-22
  • 164 Huang P L, Huang Z, Mashimo H, Bloch K D, Moskowitz M A, Bevan J A, Fishman M C. Hypertension in mice lacking the gene for endothelial nitric oxide synthase.  Nature. 1995;  377 239 - 242
  • 165 Moroi M, Zhang L, Yasuda T, Virmani R, Gold H K, Fishman M C, Huang P L. Interaction of genetic deficiency of endothelial nitric oxide, gender, and pregnancy in vascular response to injury in mice.  J Clin Invest. 1998;  101 1225 - 1232
  • 166 Sampaio R C, Tanus-Santos J E, Melo S E, Hyslop S, Franchini K G, Luca I A, Moreno H Jr. Hypertension plus diabetes mimics the cardiomyopathy induced by nitric oxide inhibition in rats.  Chest. 2002;  122 1412-1420
  • 167 Egashira K, Katsuda Y, Mohri M, Kuga T, Tagawa T, Shimokawa H, Takeshita A. Basal release of endothelium-derived nitric oxide at site of spasm in patients with variant angina.  J Am Coll Cardiol. 1996;  27 1444-1449
  • 168 Quyyumi A A, Dakak N, Andrews N P, Husain S, Arora S, Gilligan D M, Panza J A, Cannon R O 3rd. Nitric oxide activity in the human coronary circulation: Impact of risk factors for coronary atherosclerosis.  J Clin Invest. 1995;  95 1747-1755
  • 169 Kobayashi T, Kamata K. Effect of chronic insulin treatment on NO production and endothelium-dependent relaxation in aortae from established STZ-induced diabetic rats.  Atherosclerosis. 2001;  155 313-320
  • 170 Huszka M, Kaplar M, Rejto L, Tornai I, Palatka K, Laszlo P, Udvardy M. The association of reduced endothelium derived relaxing factor-NO production with endothelial damage and increased in vivo platelet activation in patients with diabetes mellitus.  Thromb Res. 1997;  86 173-80
  • 171 Treasure C B, Klein J L, Weintraub W S, Talley J D, Stillabower M E, Kosinski A S, Zhang J, Boccuzzi S J, Cedarholm J C, Alexander R W. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease.  N Engl J Med. 1995;  332 481-487
  • 172 Masumoto A, Hirooka Y, Hironaga K, Eshima K, Setoguchi S, Egashira K, Takeshita A. Effect of pravastatin on endothelial function in patients with coronary artery disease (cholesterol-independent effect of pravastatin).  Am J Cardiol. 2001;  88 1291 - 1294
  • 173 Tsunekawa T, Hayashi T, Kano H, Sumi D, Matsui-Hirai H, Thakur N K, Egashira K, Iguchi A. Cerivastatin, a hydroxymethylglutaryl coenzyme a reductase inhibitor, improves endothelial function in elderly diabetic patients within 3 days.  Circulation. 2001;  104 376-379
  • 174 Libby P. Current concepts of the pathogenesis of the acute coronary syndromes.  Circulation. 2001;  104 365-372
  • 175 Trovati M, Anfossi G, Massucco P, Mattiello L, Costamagna C, Piretto V, Mularoni E, Cavalot F, Bosia A, Ghigo D. Insulin stimulates nitric oxide synthesis in human platelets and, through nitric oxide, increases platelet concentrations of both guanosine-3',5'-cyclic monophosphate and adenosine-3'-5'-cyclic monophosphate.  Diabetes. 1997;  46 742-749
  • 176 Cooke J P, Dzau V J. Nitric oxide synthase: Role in the genesis of vascular disease.  Annu Rev Med. 1997;  48 489-509
  • 177 Liao J K. Endothelium and acute coronary syndromes.  Clin Chem. 1998;  44 1799-1808
  • 178 Dandona P, Aljada A, Mohanty P. The anti-inflammatory and potential anti-atherogenic effect of insulin: a new paradigm.  Diabetologia. 2002;  45 924-930
  • 179 Aljada A, Saadeh R, Assian E, Ghanim H, Dandona P. Insulin inhibits the expression of intercellular adhesion molecule-1 by human aortic endothelial cells through stimulation of nitric oxide.  J Clin Endocrinol Metab. 2000;  85 2572-2575
  • 180 Aljada A, Ghanim H, Saadeh R, Dandona P. Insulin inhibits NF-kB and MCP-1 expression in human aortic endothelial cells.  J Clin Endocrinol Metab. 2001;  86 450-453
  • 181 Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E, Ahmad S. Insulin inhibits intranuclear nuclear factor kB and stimulates IkB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect?.  J Clin Endocrinol Metab. 2001;  86 3257-3265
  • 182 Ghanim H, Garg R, Aljada A, Mohanty P, Kumbkarni Y, Assian E, Hamouda W, Dandona P. Suppression of nuclear factor-kB and stimulation of inhibitor kB by troglitazone: evidence for an anti-inflammatory effect and a potential antiatherosclerotic effect in the obese.  J Clin Endocrinol Metab. 2001;  86 1306-1312
  • 183 Aljada A, Ghanim H, Assian E, Dandona P. Tumor necrosis factor-alpha inhibits insulin-induced increase in endothelial nitric oxide sinthase and reduces insulin receptor content and phosphorylation in human aortic endothelial cells.  Metabolism. 2002;  51 487-491
  • 184 Numaguchi K, Egashira K, Takemoto M, Kadokami T, Shimokawa H, Sueishi K, Takeshita A. Chronic inhibition of nitric oxide synthesis causes coronary microvascular remodeling in rats.  Hypertension. 1995;  26 957-962
  • 185 Takemoto M, Egashira K, Usui M, Numaguchi K, Tomita H, Tsutsui H, Shimokawa H, Sueishi K, Takeshita A. Important role of tissue angiotensin-converting enzyme activity in the pathogenesis of coronary vascular and myocardial structural changes induced by long-term blockade of nitric oxide synthesis in rats.  J Clin Invest. 1997;  99 278-287
  • 186 Takemoto M, Egashira K, Tomita H, Usui M, Okamoto H, Kitabatake A, Shimokawa H, Sueishi K, Takeshita A. Chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade: Effects on cardiovascular remodeling in rats induced by the long-term blockade of nitric oxide synthesis.  Hypertension. 1997;  30 1621-1627
  • 187 Tomita H, Egashira K, Kubo-Inoue M, Usui M, Koyanagi M, Shimokawa H, Takeya M, Yoshimura T, Takeshita A. Inhibition of NO synthesis induces inflammatory changes and monocyte chemoattractant protein-1 expression in rat hearts and vessels.  Arterioscler Thromb Vasc Biol. 1998;  18 1456-1464
  • 188 Tomita H, Egashira K, Ohara Y, Takemoto M, Koyanagi M, Katoh M, Yamamoto H, Tamaki K, Shimokawa H, Takeshita A. Early induction of transforming growth factor-beta via angiotensin II type 1 receptors contributes to cardiac fibrosis induced by long-term blockade of nitric oxide synthesis in rats.  Hypertension. 1998;  32 273-279
  • 189 Kubo-Inoue M, Egashira K, Usui M, Takemoto M, Ohtani K, Katoh M, Shimokawa H, Takeshita A. Long-term inhibition of nitric oxide synthesis increases arterial thrombogenecity through angiotensin II-induced expression of tissue factor and resultant production of thrombin in rats.  Am J Physiol Heart Circ Physiol. 2002;  282 H1478-H1484
  • 190 Galis Z S, Khatri J J. Matrix metalloproteinases in vascular remodelling and atherogenesis: the good, the bad, the ugly.  Circ Res. 2002;  90 251-262
  • 191 Usui M, Egashira K, Kitamoto S, Koyanagi M, Katoh M, Kataoka C, Shimokawa H, Takeshita A. Pathogenic role of oxidative stress in vascular angiotensin-converting enzyme activation in long-term blockade of nitric oxide synthesis in rats.  Hypertension. 1999;  34 546-551
  • 192 Kitamoto S, Egashira K, Kataoka C, Usui M, Koyanagi M, Takemoto M, Takeshita A. Chronic inhibition of nitric oxide synthesis in rats increases aortic superoxide anion production via the action of angiotensin II.  J Hypertens. 2000;  18 1795 - 1800
  • 193 Koyanagi M, Egashira K, Kitamoto S, Ni W, Shimokawa H, Takeya M, Yoshimura T. Role of monocyte chemoattractant protein-1 in cardiovascular remodelling induced by chronic blockade of nitric oxide synthesis.  Circulation. 2000;  102 2243-2248
  • 194 Koyanagi M, Egashira K, Kubo-Inoue M, Usui M, Kitamoto S, Tomita H, Shimokawa H, Takeshita A. Role of transforming growth factor-beta 1 in cardiovascular inflammatory changes induced by chronic inhibition of nitric oxide synthesis.  Hypertension. 2000;  35 86-90

F. Chiarelli, M. D.

Department of Pediatrics

University of Chieti · Ospedale Policlinico · Via dei Vestini 5 · 66100 Chieti · Italy

Telefon: +39(871)358015

Fax: +39(871)574831

eMail: chiarelli@unich.it

    >