Abstract
The anti-estrogenic substance tamoxifen is effective in the adjuvant therapy applied
in human breast cancer. Since it partly exhibits estrogenic activity and has serious
side-effects, however, pure anti-estrogenic compounds are being sought. In our experimental
study, we compared the anti-proliferative effect of estradiol and 13 endogenous estradiol
metabolites on human breast cancer cells with the effect of tamoxifen.
We used MCF-7 and MDA-MB 231, the well-established estrogen receptor-positive and
-negative cell lines. 4-hydroxytamoxifen, the active metabolite of tamoxifen, estradiol
and 13 estradiol metabolites were tested in concentrations ranging from 3.1 to 100
μM. Incubation time was 4 days and cell proliferation was measured by means of the
ATP chemosensitivity test.
4-hydroxytamoxifen showed an IC50 value of 27 μM and 18 μM in MCF-7 and MDA-MB 231
cells, respectively. Estradiol and its metabolites were anti-proliferative in both
cell lines. A few A-ring metabolites were more effective in inhibiting cell proliferation
than D-ring metabolites and the parent substance 17β-estradiol. 4-OHE1, 2-MeOE1 and
2-MeOE2 were as effective in both cell lines as tamoxifen.
For the first time it has been demonstrated that endogenous estradiol metabolites
are equally anti-proliferative as tamoxifen in the context of human breast cancer
cells. Since some of these metabolites exhibit no estrogenic activity, they are likely
to be valuabe in clinical studies of chemoprevention and adjuvant therapy of breast
cancer.
Key words
Estradiol metabolites - Tamoxifen - Human breast cancer cells - Proliferation
References
- 1
Ingle J N.
Adjuvant endocrine therapy in postmenopausal breast cancer.
Clin Can Res.
2003;
9
480s-485s
- 2
Riggs B L, Hartmann L C.
Selective estrogen-receptor modulators - mechanisms of action and application to clinical
practice.
N Engl J Med.
2003;
348
618-629
- 3
Lippert T H, Seeger H, Mueck A O.
The impact of endogenous estradiol metabolites on carcinogenesis.
Steroids.
2000;
65
357-369
- 4 Lippert T H, Seeger H, Mueck A O.
Metabolism of endogenous estrogens. In: Oettel M, Schillinger E (eds) Estrogens and antiestrogens - handbook of experimental
pharmacology. Berlin, Heidelberg, New York; Springer 1999: 243-271
- 5
Lippert T H, Seeger H, Mueck A O.
Estradiol metabolism during oral and transdermal estradiol replacement therapy in
the postmenopause.
Horm Metab Res.
1998;
30
598-600
- 6
Mueck A O, Seeger H, Gräser T, Oettel M, Lippert T H.
The effect of postmenopausal hormone replacement therapy and oral contraceptives on
the endogenous estradiol metabolism.
Horm Metab Res.
2001;
33
744-747
- 7
Lippert T H, Seeger H, Mueck A O.
Estrogens and the cardiovascular system: role of estradiol metabolites in hormone
replacement therapy.
Climacteric.
1999;
1
296-301
- 8 Andreotti P E, Thornthwaite J T, Morse I S.
ATP Tumor Chemosensitivity Assay. In: Stanley PE, Kricka LJ (eds) Bioluminescence and Chemiluminescence: Current Status. Chichester;
J. Wiley & Sons 1991: 417-420
- 9
Zhu B T, Connery A H.
Is 2-methoxyestradiol an endogenous metabolite that inhibits mammary carcinogenesis.
Cancer Res
.
1998;
58
2269-2277
- 10
Mukhopadhyay T, Roth J A.
Induction of apoptosis in human lung cancer cells after wild type p53 activation by
2-methoxyestradiol.
Oncogene.
1997;
14
379-384
- 11
Cushman M, He H M, Katzenellenbogen J A, Lin C M, Hamel E.
Synthesis, antitubulin and antimitotic activity and cytotoxicity of analogs of 2-methoxyestradiol,
an endogenous mammalian metabolite of estradiol that inhibits tubulin polymerization
by binding to the colchicin binding site.
J Med Chem.
1995;
38
2041-2049
- 12
Seegers J C, Aveling M L, van Aswegen C H, Cross M, Koch F, Joubert W S.
The cytotoxic effects of estradiol 17 β, catecholestradiols and methoxyestradiols
on dividing MCF-7 and HeLa cells.
J Steroid Biochem.
1989;
32
797-809
- 13
Lottering M L, de Kock M, Viljoen T C, Grobler C J, Seegers J C.
17 beta-estradiol metabolites affect some regulators of the MCF-7 cell cycles.
Cancer Lett.
1996;
110
181-186
- 14
Klauber N, Parangi S, Flynn E, Hamel E, D’Amato R J.
Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors
2-methoxyoestradiol and taxol.
Cancer Res.
1997;
57
81-86
- 15
Fotsis T, Zhang Y, Pepper M S, Adlercreutz H, Montesano R, Nawroth P P, Schweigerer L.
The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and
suppresses tumour growth.
Nature.
1994;
368
237-239
- 16
Lippert C, Seeger H, Mueck A O, Lippert T H.
The effects of A-ring and D-ring metabolites of estradiol on the proliferation of
vascular endothelial cells.
Life Sciences.
2000;
67
1653-1658
- 17
Roy D, Weisz J, Liehr L G.
The O-methylation of 4-hydroxyestradiol is inhibited by 2-hydroxyestradiol: implications
for estrogen-induced carcinogenesis.
Carcinogenesis.
1990;
11
459-462
- 18
Kabat G C, Chang C J, Sparano J A, Sepkovic D W, Hu X P, Khalil A, Rosenblatt R, Bradlow H L.
Urinary estrogen metabolites and breast cancer: A case-control study.
Cancer Epidemiol Biomarkers Prev.
1997;
6
505-509
- 19
Meilahn E N, de Stavol B, Allen D S, Fentiman I, Bradlow H L, Stepkovic D W, Kuller L H.
Do urinary oestrogen metabolites predict breast cancer? Guernsey III cohort follow-up.
Br J Cancer.
1998;
78
1250-1255
- 20
Muti P, Bradlow H L, Micheli A, Krogh V, Freudenheim J L, Schunemann H J, Stanulla M,
Yang J, Sepkovic D W, Trevisan M, Berrino F.
Estrogen metabolism and risk of breast cancer: a prospective study of 2 : 16alpha-hydroxyestrone
ratio in premenopausal and postmenopausal women.
Epidemiology.
2000;
11
635-640
- 21
Bradlow H L, Telang N T, Sepkovic D W, Osborne M P.
2-Hydroxyestrone: the ‘good’ estrogen.
J Endocrinology.
1996;
150
S259-S265
- 22
Jordan J C.
The past, present, and future of selective estrogen receptor modulation.
Ann NY Acad Sci.
2001;
949
72-79
- 23
Coletta A A, Benson J R, Baum M.
Alternative mechanisms of action of anti-oestrogens.
Breast Cancer Res Treat.
1994;
31
5-9
- 24
Butta A, MacLennan K, Flanders K C, Sacks N PM, Smith I, McKinna A, Dowsett M, Wakefield L M,
Sporn M B, Baum M, Colletta A A.
Induction of transforming growth factor β 1 in human breast cancer in vivo following tamoxifen treatment.
Cancer Res.
1992;
52
4261-4264
- 25
Cullen K J, Lippmann M E, Chow D, Hill S, Rosen N, Zwiebel J A.
Insulin-like growth factor-II overexpression in MCF-7 cells induces phenotypic changes
associated with malignant progression.
Mol Endocrinol.
1992;
6
91-100
- 26
Coradini D, Biffi A, Cappelletti V, di Fronzo G.
Activity of tamoxifen and new antiestrogens on estrogen receptor positive and negative
breast cancer cells.
Anticancer Res.
1994;
14
1059-1064
- 27
Shen F, Xue X, Weber G.
Tamoxifen and genistein synergistically down-regulate signal transduction and proliferation
in estrogen receptor-negative human breast carcinoma MDA-MB-435 cells.
Anticancer Res.
1999;
19
1657-1662
- 28
Aldous W K, Marean A J, DeHart M J, Matej L A, Moore K H.
Effects of tamoxifen on telomerase activity in breast carcinoma cell lines.
Cancer.
1999;
85
1523-1529
- 29
Swain S M.
Tamoxifen for patients with estrogen receptor-negative breast cancer.
J Clinical Oncology.
2001;
19
93s-97s
- 30
Seeger H, Wallwiener D, Mueck A O.
The effect of progesterone and synthetic progestins on serum- and estradiol-stimulated
proliferation of human breast cancer cells.
Horm Metab Res.
2003;
35
76-80
- 31
Fuchs W S, Leary W P, van der Meer M J, Gay S, Witschital K, van Nieciecki A.
Pharmacokinetics and bioavailability of tamoxifen in postmenopausal healthy women.
Arzneimittelforschung.
1996;
46
418-422
- 32 Miller K D, Haney L G, Pribluda V S, Sledge G W. A phase II safety, pharmacokinetic
and pharmacodynamic study of Panzem (2-methoxyestradiol) in patients with refractory
metastatic breast cancer. 37th Congress of the American Society of Clinical Oncology,
San Francisco, May 12 - 15, 2001, Abstract No. 170.
A. O. Mueck, M. D., Ph. D., Pharm. D.
Head, Section of Endocrinology and Menopause · University Women’s Hospital
Calwerstrasse 7 · 72076 Tuebingen · Germany
Fax: +49 (7071)294801 ·
eMail: endo.meno@med.uni-tuebingen.de