Horm Metab Res 2004; 36(5): 272-276
DOI: 10.1055/s-2004-814478
Original Basic
© Georg Thieme Verlag Stuttgart · New York

17β-Estradiol Prevents Blood-brain Barrier Disruption Induced by VEGF

O.  Z.  Chi1 , S.  Barsoum1 , Y.  Wen3 , X. Liu1 , H.  R.  Weiss2
  • 1Department of Anesthesia, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey
  • 2Department of Physiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey
  • 3Department of Pediatrics, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey
Weitere Informationen

Publikationsverlauf

Received 24 July 2003

Accepted after Revision 3 December 2003

Publikationsdatum:
24. Mai 2004 (online)

Abstract

We performed this study to determine how pretreatment of the ovariectomized rats with 17β-estradiol could affect blood-brain barrier disruption caused by the vascular endothelial growth factor (VEGF), an important mediator of vascular permeability. Ovariectomized female rats aged twelve to fourteen weeks were used in the study. A 500 µg 17β-estradiol 21-day release pellet was implanted in the 17β-estradiol group, and a vehicle pellet was implanted in the control group 21 days before the experiments. We performed three craniotomies under isoflurane anesthesia to expose cerebral cortices. Normal saline, 10- 10M and 10 - 9M VEGF patches were applied on each hole for 30 min. The transfer coefficient (Ki) of 14C-α-amino isobutyric acid and volume of 3H-dextran (70,000 dalton) distribution were determined to measure the degree of BBB disruption. Ki was increased by 108 % and 138 % with 10 - 10M and 10 - 9M VEGF respectively after VEGF application in the control group (p < 0.01). However, there was no significant increase in the Ki with the VEGF application in the 17β-estradiol group, and their values were significantly lower than the corresponding data of the control group (10 - 10M: - 55 %, 10 - 9M: - 52 %, p <0.05). The volume of dextran distribution in the control group increased by 47 % with VEGF 10 - 9M (p < 0.05) , whereas there was no significant change in the volume of dextran distribution with VEGF application in the 17β-estradiol group and the volume was lower than the corresponding volume of the vehicle-treated control group (10 - 10M: - 34 %, 10 - 9M: -32 %, p < 0.05). In conclusion, our study demonstrated that chronic 17β-estradiol treatment prevented BBB disruption induced by the VEGF in the ovariectomized rats.

References

  • 1 Fischer S, Wobben M, Marti H H, Renz D, Schaper W. Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1.  Microvasc Res. 2002;  63(1) 0-80
  • 2 Zhang Z G, Zhang L, Tsang W, Soltanian-Zadeh H, Morris D, Zhang R, Goussev A, Powers C, Yeich T, Chopp M. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia.  J Cereb Blood Flow Metab. 2002;  22(4) 379-392
  • 3 Chi O Z, Liu X, Weiss H R. Effects of 17β-estradiol on blood-brain barrier disruption during focal ischemia in rats.  Horm Metab Res. 2002;  34 530-534
  • 4 Gardner G, Banka C L, Roberts K A, Mullick A E, Rutledge J C. Modified LDL-mediated increases in endothelial layer permeability are attenuated with 17 beta-estradiol.  Arterioscler Thromb Vasc Biol. 1999;  19 854-861
  • 5 Nishino H, Nakajima K, Kumazaki M, Fukuda A, Muramatsu K, Deshpande S B, Inubushi T, Morikawa S, Borlongan C V, Sanberg P R. Estrogen protects against while testosterone exacerbates vulnerability of the lateral striatal artery to chemical hypoxia by 3-nitropropionic acid.  Neurosci Res. 1998;  30 303-312
  • 6 Hyder S M, Huang J C, Nawaz Z, Boettger-Tong H, Makela S, Chiappetta C, Stancel G M. Regulation of vascular endothelial growth factor expression by estrogens and progestins.  Environ Health Perspect. 2000;  108(S5) 785-790
  • 7 Takei H, Lee E S, Jordan V C. In vitro regulation of vascular endothelial growth factor by estrogens and antiestrogens in estrogen-receptor positive breast cancer.  Breast Cancer. 2002;  9(1) 39-42
  • 8 Dardes R C, Schafer J M, Pearce S T, Osipo C, Chen B, Jordan V C. Regulation of estrogen target genes and growth by selective estrogen-receptor modulators in endometrial cancer cells.  Gynecol Oncol. 2002;  85(3) 498-506
  • 9 Jesmin S, Sakuma I, Hattori Y, Kitabatake A. In vivo estrogen manipulations on coronary capillary network and angiogenic molecule expression in middle-aged female rats.  Arterioscler Thromb Vasc Biol. 2002;  22(10) 1591-1597
  • 10 Miyamoto N, Mandai M, Takagi H, Suzuma I, Suzuma K, Koyama S, Otani A, Oh H, Honda Y. Contrasting effect of estrogen on VEGF induction under different oxygen status and its role in murine ROP.  Invest Ophthalmol Vis Sci. 2002;  43 2007-2011
  • 11 Mayhan W G. VEGF increases permeability of the blood-brain barrier via a nitric oxide synthase/cGMP-dependent pathway.  Am J Physiol. 1999;  276 C1148-C1153
  • 12 Watanabe T, Inoue S, Hiroi H, Orimo A, Muramatsu M. NMDA receptor type 2D gene as target for estrogen receptor in the brain.  Brain Res Mol Brain Res. 1999;  63 375-379
  • 13 Cyr M, Ghribi O, di Paolo T. Regional and selective effects of oestradiol and progesterone on NMDA and AMPA receptors in the rat brain.  J Neuroendocrinol. 2000;  12 445-452
  • 14 Shy H, Malaiyandi L, Timiras P S. Protective action of 17beta-estradiol and tamoxifen on glutamate toxicity in glial cells.  Intern J Devel Neurosci. 2000;  8 289-297
  • 15 McNeill A M, Kim N, Duckles S P, Krause D N. Chronic estrogen treatment increases levels of endothelial nitric oxide synthase protein in rat cerebral microvessels.  Stroke. 1999;  30 2186-2190
  • 16 Caulin-Glaser T, Garcia-Cardena G, Sarrel P, Sessa W C, Bender J R. Beta-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic CA2+ mobilization.  Circ Res. 1997;  81 885-892
  • 17 Chi O Z, Liu X, Weiss H R. Effects of inhibition of neuronal nitric oxide synthase on NMDA-induced changes in cerebral blood flow and oxygen consumption.  Exp Brain Res. 2003;  148(2) 256-260
  • 18 Sevoz-Couche C, Maisonneuve B, Hamon M, Laguzzi R. Glutamate and NO mediation of the pressor response to 5-HT3 receptor stimulation in the nucleus tractus solitarii.  Neuroreport. 2002;  13(6) 837-841
  • 19 Gross P M, Blasberg R G, Fenstermacher J D, Patlak C S. The microcirculation of rat circumventricular organs and pituitary gland.  Brain Res Bull. 1987;  18 73-85
  • 20 Chi O Z, Liu C, Weiss H R. Effects of mild hypothermia on blood-brain barrier disruption during isoflurane or pentobarbital anesthesia.  Anesthesiology. 2001;  95(4) 933-938
  • 21 Zhang Z G, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, van Bruggen N, Chopp M. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain.  J Clin Invest. 2000;  106 829-838
  • 22 Sampei K, Goto S, Alkayed N J, Crain B J, Korach K S, Traystman R J, Demas G E, Nelson R J, Hurn P D. Stroke in estrogen receptor-α-deficient mice.  Stroke. 2000;  31(3) 738-744

O. Z. Chi, M. D.

Department of Anesthesia

University of Medicine and Dentistry of New Jersey · Robert Wood Johnson Medical School · 125 Paterson Street · Suite 3100 · New Brunswick · New Jersey 08901-1977 · USA

Telefon: +1(732)235-7827

Fax: +1(732)235-6131

eMail: chi@umdnj.edu

    >