Abstract
The insulin receptor plays a vital role in mediating the actions of insulin. These
include metabolic and mitogenic effects. This review will focus on the role of the
insulin receptor isoforms in normal development and the pathogenesis of certain cancers
and type 2 diabetes. There are two insulin receptor isoforms arising from the alternative
splicing of exon 11 resulting in either the exon 11+ (IR-B) isoform (including 12
amino acids encoded by exon 11) or the exon 11- (IR-A) isoform. The isoforms have
different affinities for insulin, IGF-II and IGF-I with the exon 11- isoform binding
both insulin and IGF-II with high affinities. Interestingly, differential expression
of the insulin receptor isoforms has been demonstrated in disease. Several cancer
cell types that also overexpress IGF-II preferentially express the exon 11- isoform.
Activation of the exon 11- insulin receptor by IGF-II and insulin results in mitogenic
effects and a potentiation of the cancer phenotype. Also hyperinsulinemia has been
associated with increased risk of cancer. Differential expression of the insulin receptor
isoforms has also been demonstrated in type 2 diabetes although there is some discrepancy
in the literature as to which isoform is expressed.
Key words
Insulin receptor - Isoform - Cancer - Type 2 diabetes - Exon 11+ - Exon 11- - Hyperinsulinemia
References
- 1
Virkamaki A, Ueki K, Kahn C R.
Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin
resistance.
J Clin Invest.
1999;
103
931-943
- 2
Kahn B B, Flier J S.
Obesity and insulin resistance.
J Clin Invest.
2000;
106
473-481
- 3
Sesti G.
Insulin receptor variant forms and type 2 diabetes mellitus.
Pharmacogenomics.
2000;
1
49-61
- 4
Sesti G, Federici M, Lauro D, Sbraccia P, Lauro R.
Molecular mechanism of insulin resistance in type 2 diabetes mellitus: role of the
insulin receptor variant forms.
Diabetes Metab Res Rev.
2001;
17
363-373
- 5
Zick Y.
Insulin resistance: a phosphorylation-based uncoupling of insulin signaling.
Trends Cell Biol.
2001;
11
437-441
- 6
Mauvais-Jarvis F, Kulkarni R N, Kahn C R.
Knockout models are useful tools to dissect the pathophysiology and genetics of insulin
resistance.
Clin Endocrinol (Oxf).
2002;
57
1-9
- 7
Czech M P.
Structural and functional homologies in the receptors for insulin and the insulin-like
growth factors.
Cell.
1982;
31
8-10
- 8
Siddle K, Urso B, Niesler C A, Cope D L, Molina L, Surinya K H, Soos M A.
Specificity in ligand binding and intracellular signalling by insulin and insulin-like
growth factor receptors.
Biochem Soc Trans.
2001;
29
513-525
- 9
Adams T E, Epa V C, Garrett T P, Ward C W.
Structure and function of the type 1 insulin-like growth factor receptor.
Cell Mol Life Sci.
2000;
57
1050-1093
- 10
De Meyts P, Whittaker J.
Structural biology of insulin and IGF1 receptors: implications for drug design.
Nat Rev Drug Discov.
2002;
1
769-783
- 11
Schaefer E M, Siddle K, Ellis L.
Deletion analysis of the human insulin receptor ectodomain reveals independently folded
soluble subdomains and insulin binding by a monomeric alpha-subunit.
J Biol Chem.
1990;
265
13 248-13 253
- 12
Brandt J, Andersen A S, Kristensen C.
Dimeric fragment of the insulin receptor alpha-subunit binds insulin with full holoreceptor
affinity.
J Biol Chem.
2001;
276
12 378-12 384
- 13
Andersen A S, Kjeldsen T, Wiberg F C, Christensen P M, Rasmussen J S, Norris K, Moller K B,
Moller N P.
Changing the insulin receptor to possess insulin-like growth factor I ligand specificity.
Biochemistry.
1990;
29
7363-7366
- 14
Kjeldsen T, Andersen A S, Wiberg F C, Rasmussen J S, Schaffer L, Balschmidt P, Moller K B,
Moller N P.
The ligand specificities of the insulin receptor and the insulin-like growth factor
I receptor reside in different regions of a common binding site.
Proc Natl Acad Sci USA.
1991;
88
4404-4408
- 15
Schumacher R, Mosthaf L, Schlessinger J, Brandenburg D, Ullrich A.
Insulin and insulin-like growth factor-1 binding specificity is determined by distinct
regions of their cognate receptors.
J Biol Chem.
1991;
266
19 288-19 295
- 16
Wedekind F, Baer-Pontzen K, Bala-Mohan S, Choli D, Zahn H, Brandenburg D.
Hormone binding site of the insulin receptor: analysis using photoaffinity-mediated
avidin complexing.
Biol Chem Hoppe Seyler.
1989;
370
251-258
- 17
Fabry M, Schaefer E, Ellis L, Kojro E, Fahrenholz F, Brandenburg D.
Detection of a new hormone contact site within the insulin receptor ectodomain by
the use of a novel photoreactive insulin.
J Biol Chem.
1992;
267
8950-8956
- 18
Kurose T, Pashmforoush M, Yoshimasa Y, Carroll R, Schwartz G P, Burke G T, Katsoyannis P G,
Steiner D F.
Cross-linking of a B25 azidophenylalanine insulin derivative to the carboxyl-terminal
region of the alpha-subunit of the insulin receptor. Identification of a new insulin-binding
domain in the insulin receptor.
J Biol Chem.
1994;
269
29 190-29 197
- 19
Williams P F, Mynarcik D C, Yu G Q, Whittaker J.
Mapping of an NH2-terminal ligand binding site of the insulin receptor by alanine
scanning mutagenesis.
J Biol Chem.
1995;
270
3012-3016
- 20
Mynarcik D C, Yu G Q, Whittaker J.
Alanine-scanning mutagenesis of a C-terminal ligand binding domain of the insulin
receptor alpha subunit.
J Biol Chem.
1996;
271
2439-2442
- 21
Yip C C, Jack E.
Insulin receptors are bivalent as demonstrated by photoaffinity labeling.
J Biol Chem.
1992;
267
13 131-13 134
- 22
Schaffer L.
A model for insulin binding to the insulin receptor.
Eur J Biochem.
1994;
221
1127-1132
- 23
Boni-Schnetzler M, Scott W, Waugh S M, DiBella E, Pilch P F.
The insulin receptor. Structural basis for high affinity ligand binding.
J Biol Chem.
1987;
262
8395-8401
- 24
Molina L, Marino-Buslje C, Quinn D R, Siddle K.
Structural domains of the insulin receptor and IGF receptor required for dimerisation
and ligand binding.
FEBS Lett.
2000;
467
226-230
- 25
Surinya K H, Molina L, Soos M A, Brandt J, Kristensen C, Siddle K.
Role of insulin receptor dimerization domains in ligand binding, cooperativity, and
modulation by anti-receptor antibodies.
J Biol Chem.
2002;
277
16 718-16 725
- 26
Frattali A L, Treadway J L, Pessin J E.
Transmembrane signaling by the human insulin receptor kinase. Relationship between
intramolecular beta subunit trans- and cis-autophosphorylation and substrate kinase
activation.
J Biol Chem.
1992;
267
19 521-19 528
- 27
Hubbard S R.
Crystal structure of the activated insulin receptor tyrosine kinase in complex with
peptide substrate and ATP analog.
EMBO J.
1997;
16
5572-5581
- 28
Shepherd P R, Nave B T, Siddle K.
Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked
by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of
phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase.
Biochem J.
1995;
305
25-28
- 29
Louvi A, Accili D, Efstratiadis A.
Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic
development.
Dev Biol.
1997;
189
33-48
- 30
Kitamura T, Kahn C R, Accili D.
Insulin receptor knockout mice.
Annu Rev Physiol.
2003;
65
313-332
- 31
Kondo T, Vicent D, Suzuma K, Yanagisawa M, King G L, Holzenberger M, Kahn C R.
Knockout of insulin and IGF-1 receptors on vascular endothelial cells protects against
retinal neovascularization.
J Clin Invest.
2003;
111
1835-1842
- 32
Entingh A J, Taniguchi C M, Kahn C R.
Bi-directional regulation of brown fat adipogenesis by the insulin receptor.
J Biol Chem.
2003;
278
33 377-33 383
- 33
Kulkarni R N, Bruning J C, Winnay J N, Postic C, Magnuson M A, Kahn C R.
Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates
an insulin secretory defect similar to that in type 2 diabetes.
Cell.
1999;
96
329-339
- 34
Lauro D, Kido Y, Castle A L, Zarnowski M J, Hayashi H, Ebina Y, Accili D.
Impaired glucose tolerance in mice with a targeted impairment of insulin action in
muscle and adipose tissue.
Nat Genet.
1998;
20
294-298
- 35
Michael M D, Kulkarni R N, Postic C, Previs S F, Shulman G I, Magnuson M A, Kahn C R.
Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive
hepatic dysfunction.
Mol Cell.
2000;
6
87-97
- 36
Fisher S J, Kahn C R.
Insulin signaling is required for insulin’s direct and indirect action on hepatic
glucose production.
J Clin Invest.
2003;
111
463-468
- 37
Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E, Ou J H, Masiarz F, Kan Y W,
Goldfine I D. et al .
The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane
signalling.
Cell.
1985;
40
747-758
- 38
Ullrich A, Bell J R, Chen E Y, Herrera R, Petruzzelli L M, Dull T J, Gray A, Coussens L,
Liao Y C, Tsubokawa M. et al .
Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes.
Nature.
1985;
313
756-761
- 39
Seino S, Seino M, Nishi S, Bell G I.
Structure of the human insulin receptor gene and characterization of its promoter.
Proc Natl Acad Sci USA.
1989;
86
114-118
- 40
Seino S, Bell G I.
Alternative splicing of human insulin receptor messenger RNA.
Biochem Biophys Res Commun.
1989;
159
312-316
- 41
Moller D E, Yokota A, Caro J F, Flier J S.
Tissue-specific expression of two alternatively spliced insulin receptor mRNAs in
man.
Mol Endocrinol.
1989;
3
1263-1269
- 42
Mosthaf L, Grako K, Dull T J, Coussens L, Ullrich A, McClain D A.
Functionally distinct insulin receptors generated by tissue-specific alternative splicing.
EMBO J.
1990;
9
2409-2413
- 43
Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, Goldfine I D, Belfiore A,
Vigneri R.
Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth
factor II receptor in fetal and cancer cells.
Mol Cell Biol.
1999;
19
3278-3288
- 44
Kosaki A, Nelson J, Webster N J.
Identification of intron and exon sequences involved in alternative splicing of insulin
receptor pre-mRNA.
J Biol Chem.
1998;
273
10 331-10 337
- 45
Savkur R S, Philips A V, Cooper T A.
Aberrant regulation of insulin receptor alternative splicing is associated with insulin
resistance in myotonic dystrophy.
Nat Genet.
2001;
29
40-47
- 46
McClain D A.
Different ligand affinities of the two human insulin receptor splice variants are
reflected in parallel changes in sensitivity for insulin action.
Mol Endocrinol.
1991;
5
734-739
- 47
Yamaguchi Y, Flier J S, Yokota A, Benecke H, Backer J M, Moller D E.
Functional properties of two naturally occurring isoforms of the human insulin receptor
in Chinese hamster ovary cells.
Endocrinology.
1991;
129
2058-2066
- 48
Yamaguchi Y, Flier J S, Benecke H, Ransil B J, Moller D E.
Ligand-binding properties of the two isoforms of the human insulin receptor.
Endocrinology.
1993;
132
1132-1138
- 49
Kotzke G, Schutt M, Missler U, Moller D E, Fehm H L, Klein H H.
Binding of human, porcine and bovine insulin to insulin receptors from human brain,
muscle and adipocytes and to expressed recombinant alternatively spliced insulin receptor
isoforms.
Diabetologia.
1995;
38
757-763
- 50
Kellerer M, Lammers R, Ermel B, Tippmer S, Vogt B, Obermaier-Kusser B, Ullrich A,
Haring H U.
Distinct alpha-subunit structures of human insulin receptor A and B variants determine
differences in tyrosine kinase activities.
Biochemistry.
1992;
31
4588-4596
- 51
Kosaki A, Pillay T S, Xu L, Webster N J.
The B isoform of the insulin receptor signals more efficiently than the A isoform
in HepG2 cells.
J Biol Chem.
1995;
270
20 816-20 823
- 52
Vogt B, Carrascosa J M, Ermel B, Ullrich A, Haring H U.
The two isotypes of the human insulin receptor (HIR-A and HIR-B) follow different
internalization kinetics.
Biochem Biophys Res Commun.
1991;
177
1013-1018
- 53
Whittaker J, Sorensen H, Gadsboll V L, Hinrichsen J.
Comparison of the functional insulin binding epitopes of the A and B isoforms of the
insulin receptor.
J Biol Chem.
2002;
277
47 380-47 384
- 54
Leibiger B, Leibiger I B, Moede T, Kemper S, Kulkarni R N, Kahn C R, de Vargas L M,
Berggren P O.
Selective insulin signaling through A and B insulin receptors regulates transcription
of insulin and glucokinase genes in pancreatic beta cells.
Mol Cell.
2001;
7
559-570
- 55
Sciacca L, Prisco M, Wu A, Belfiore A, Vigneri R, Baserga R.
Signaling differences from the A and B isoforms of the insulin receptor (IR) in 32D
cells in the presence or absence of IR substrate-1.
Endocrinology.
2003;
144
2650-2658
- 56
Kosaki A, Webster N J.
Effect of dexamethasone on the alternative splicing of the insulin receptor mRNA and
insulin action in HepG2 hepatoma cells.
J Biol Chem.
1993;
268
21 990-21 996
- 57
Sell S M, Reese D, Ossowski V M.
Insulin-inducible changes in insulin receptor mRNA splice variants.
J Biol Chem.
1994;
269
30 769-30 772
- 58
Norgren S, Li L S, Luthman H.
Regulation of human insulin receptor RNA splicing in HepG2 cells: effects of glucocorticoid
and low glucose concentration.
Biochem Biophys Res Commun.
1994;
199
277-284
- 59
Hribal M L, Perego L, Lovari S, Andreozzi F, Menghini R, Perego C, Finzi G, Usellini L,
Placidi C, Capella C, Guzzi V, Lauro D, Bertuzzi F, Davalli A, Pozza G, Pontiroli A,
Federici M, Lauro R, Brunetti A, Folli F, Sesti G.
Chronic hyperglycemia impairs insulin secretion by affecting insulin receptor expression,
splicing, and signaling in RIN beta cell line and human islets of Langerhans.
FASEB J.
2003;
17
1340-1342
- 60
Lou Y, Zee R Y, Li M, Morris B J.
No difference in the proportion of insulin receptor exon 11 +/- isoform mRNA in the
liver of rats after development of hypertension.
Clin Exp Pharmacol Physiol.
1996;
23
602-604
- 61
Anderson C M, Henry R R, Knudson P E, Olefsky J M, Webster N J.
Relative expression of insulin receptor isoforms does not differ in lean, obese, and
noninsulin-dependent diabetes mellitus subjects.
J Clin Endocrinol Metab.
1993;
76
1380-1382
- 62
Vidal H, Auboeuf D, Beylot M, Riou J P.
Regulation of insulin receptor mRNA splicing in rat tissues. Effect of fasting, aging,
and diabetes.
Diabetes.
1995;
44
1196-1201
- 63
Wiersma M M, Auboeuf D, Nieuwenhuizen-Bakker I M, Radder J K, Riou J P, Vidal H.
Insulin receptor mRNA splicing and altered metabolic control in aged and mildly insulin-deficient
rats.
Am J Physiol.
1997;
272
E607-615
- 64
van der Vorm E R, Maassen J A.
Alternative splicing of the insulin receptor isoforms is altered in patients with
leprechaunism.
Horm Metab Res.
1994;
26
599-601
- 65
Sciacca L, Costantino A, Pandini G, Mineo R, Frasca F, Scalia P, Sbraccia P, Goldfine I D,
Vigneri R, Belfiore A.
Insulin receptor activation by IGF-II in breast cancers: evidence for a new autocrine/paracrine
mechanism.
Oncogene.
1999;
18
2471-2479
- 66
Kalli K R, Falowo O I, Bale L K, Zschunke M A, Roche P C, Conover C A.
Functional insulin receptors on human epithelial ovarian carcinoma cells: implications
for IGF-II mitogenic signaling.
Endocrinology.
2002;
143
3259-3267
- 67
Vella V, Pandini G, Sciacca L, Mineo R, Vigneri R, Pezzino V, Belfiore A.
A novel autocrine loop involving IGF-II and the insulin receptor isoform-A stimulates
growth of thyroid cancer.
J Clin Endocrinol Metab.
2002;
87
245-254
- 68
Sciacca L, Mineo R, Pandini G, Murabito A, Vigneri R, Belfiore A.
In IGF-I receptor-deficient leiomyosarcoma cells autocrine IGF-II induces cell invasion
and protection from apoptosis via the insulin receptor isoform A.
Oncogene.
2002;
21
8240-8250
- 69
von Horn H, Tally M, Hall K, Eriksson T, Ekstrom T J, Gray S G.
Expression levels of insulin-like growth factor binding proteins and insulin receptor
isoforms in hepatoblastomas.
Cancer Lett.
2001;
162
253-260
- 70
LeRoith D, Roberts C T Jr.
The insulin-like growth factor system and cancer.
Cancer Lett.
2003;
195
127-137
- 71
Morrione A, Valentinis B, Xu S Q, Yumet G, Louvi A, Efstratiadis A, Baserga R.
Insulin-like growth factor II stimulates cell proliferation through the insulin receptor.
Proc Natl Acad Sci USA.
1997;
94
3777-3782
- 72
Gicquel C, Bertagna X, Schneid H, Francillard-Leblond M, Luton J P, Girard F, Le Bouc Y.
Rearrangements at the 11p15 locus and overexpression of insulin-like growth factor-II
gene in sporadic adrenocortical tumors.
J Clin Endocrinol Metab.
1994;
78
1444-1453
- 73
Renehan A G, Jones J, Potten C S, Shalet S M, O’Dwyer S T.
Elevated serum insulin-like growth factor (IGF)-II and IGF binding protein-2 in patients
with colorectal cancer.
Br J Cancer.
2000;
83
1344-1350
- 74
Quinn K A, Treston A M, Unsworth E J, Miller M J, Vos M, Grimley C, Battey J, Mulshine J L,
Cuttitta F.
Insulin-like growth factor expression in human cancer cell lines.
J Biol Chem.
1996;
271
11 477-11 483
- 75
Cui H, Cruz-Correa M, Giardiello F M, Hutcheon D F, Kafonek D R, Brandenburg S, Wu Y,
He X, Powe N R, Feinberg A P.
Loss of IGF2 imprinting: a potential marker of colorectal cancer risk.
Science.
2003;
299
1753-1755
- 76
Okamoto K, Morison I M, Taniguchi T, Reeve A E.
Epigenetic changes at the insulin-like growth factor II/ H19 locus in developing kidney
is an early event in Wilms tumorigenesis.
Proc Natl Acad Sci USA.
1997;
94
5367-5371
- 77
Cullen K J, Lippman M E, Chow D, Hill S, Rosen N, Zwiebel J A.
Insulin-like growth factor-II overexpression in MCF-7 cells induces phenotypic changes
associated with malignant progression.
Mol Endocrinol.
1992;
6
91-100
- 78
Devi G R, De Souza A T, Byrd J C, Jirtle R L, MacDonald R G.
Altered ligand binding by insulin-like growth factor II/mannose 6-phosphate receptors
bearing missense mutations in human cancers.
Cancer Res.
1999;
59
4314-4319
- 79
Byrd J C, Devi G R, de Souza A T, Jirtle R L, MacDonald R G.
Disruption of ligand binding to the insulin-like growth factor II/mannose 6-phosphate
receptor by cancer-associated missense mutations.
J Biol Chem.
1999;
274
24 408-24 416
- 80
Osipo C, Dorman S, Frankfater A.
Loss of insulin-like growth factor II receptor expression promotes growth in cancer
by increasing intracellular signaling from both IGF-I and insulin receptors.
Exp Cell Res.
2001;
264
388-396
- 81
Souza R F, Wang S, Thakar M, Smolinski K N, Yin J, Zou T T, Kong D, Abraham J M, Toretsky J A,
Meltzer S J.
Expression of the wild-type insulin-like growth factor II receptor gene suppresses
growth and causes death in colorectal carcinoma cells.
Oncogene.
1999;
18
4063-4068
- 82
Pandini G, Medico E, Conte E, Sciacca L, Vigneri R, Belfiore A.
Differential gene expression induced by insulin and IGF-ii through the insulin receptor
isoform A.
J Biol Chem.
2003;
278
42 178-42 189
- 83
Giovannucci E.
Insulin, insulin-like growth factors and colon cancer: a review of the evidence.
J Nutr.
2001;
131
3109S-31020S
- 84
Meyerhardt J A, Catalano P J, Haller D G, Mayer R J, Macdonald J S, Benson A B, 3rd ,
Fuchs C S.
Impact of diabetes mellitus on outcomes in patients with colon cancer.
J Clin Oncol.
2003;
21
433-440
- 85
Huang Z, Bodkin N L, Ortmeyer H K, Hansen B C, Shuldiner A R.
Hyperinsulinemia is associated with altered insulin receptor mRNA splicing in muscle
of the spontaneously obese diabetic rhesus monkey.
J Clin Invest.
1994;
94
1289-1296
- 86
Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, Zick Y.
A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation
of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin
receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation.
J Biol Chem.
1997;
272
29 911-29 918
- 87
Kellerer M, Sesti G, Seffer E, Obermaier-Kusser B, Pongratz D E, Mosthaf L, Haring H U.
Altered pattern of insulin receptor isotypes in skeletal muscle membranes of type
2 (non-insulin-dependent) diabetic subjects.
Diabetologia.
1993;
36
628-632
- 88
Sesti G, D’Alfonso R, Vargas P unti, Frittitta L, Trischitta V, Liu Y Y, Borboni P,
Longhi R, Montemurro A, Lauro R.
Peptide-based radioimmunoassay for the two isoforms of the human insulin receptor.
Diabetologia.
1995;
38
445-453
- 89
Norgren S, Zierath J, Galuska D, Wallberg-Henriksson H, Luthman H.
Differences in the ratio of RNA encoding two isoforms of the insulin receptor between
control and NIDDM patients. The RNA variant without Exon 11 predominates in both groups.
Diabetes.
1993;
42
675-681
- 90
Benecke H, Flier J S, Moller D E.
Alternatively spliced variants of the insulin receptor protein. Expression in normal
and diabetic human tissues.
J Clin Invest.
1992;
89
2066-2070
- 91
Norgren S, Zierath J, Wedell A, Wallberg-Henriksson H, Luthman H.
Regulation of human insulin receptor RNA splicing in vivo.
Proc Natl Acad Sci USA.
1994;
91
1465-1469
- 92
Soos M A, Field C E, Siddle K.
Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth
factor-I, but not insulin, with high affinity.
Biochem J.
1993;
290
419-426
- 93
Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A.
Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics
depending on the insulin receptor isoform involved.
J Biol Chem.
2002;
277
39 684-39 695
- 94
Belfiore A, Pandini G, Vella V, Squatrito S, Vigneri R.
Insulin/IGF-I hybrid receptors play a major role in IGF-I signaling in thyroid cancer.
Biochimie.
1999;
81
403-407
- 95
Pandini G, Vigneri R, Costantino A, Frasca F, Ippolito A, Fujita-Yamaguchi Y, Siddle K,
Goldfine I D, Belfiore A.
Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast
cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second
mechanism of IGF-I signaling.
Clin Cancer Res.
1999;
5
1935-1944
- 96
Garrouste F L, Remacle-Bonnet M M, Lehmann M M, Marvaldi J L, Pommier G J.
Up-regulation of insulin/insulin-like growth factor-I hybrid receptors during differentiation
of HT29-D4 human colonic carcinoma cells.
Endocrinology.
1997;
138
2021-2032
- 97
Federici M, Zucaro L, Porzio O, Massoud R, Borboni P, Lauro D, Sesti G.
Increased expression of insulin/insulin-like growth factor-I hybrid receptors in skeletal
muscle of noninsulin-dependent diabetes mellitus subjects.
J Clin Invest.
1996;
98
2887-2893
- 98
Federici M, Porzio O, Zucaro L, Giovannone B, Borboni P, Marini M A, Lauro D, Sesti G.
Increased abundance of insulin/IGF-I hybrid receptors in adipose tissue from NIDDM
patients.
Mol Cell Endocrinol.
1997;
135
41-47
- 99
Ullrich A, Gray A, Tam A W, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T,
Kathuria S, Chen E. et al .
Insulin-like growth factor I receptor primary structure: comparison with insulin receptor
suggests structural determinants that define functional specificity.
EM BO J.
1986;
5
2503-2512
A. Denley
School of Molecular and Biomedical Sciences · The University of Adelaide
Adelaide 5005 · South Australia
Telefon: +61(8)8303-5581
Fax: +61(8)8303-4348
eMail: adam.denley@adelaide.edu.au