Aktuelle Urol 2003; 34(7): 458-468
DOI: 10.1055/s-2003-45263
Übersichtsarbeit
© Georg Thieme Verlag Stuttgart · New York

Grundlagen der Antisense-Oligonukleotid-Therapie und derzeitige Therapiestrategien in der Urologie

Basics of Antisense Oligonucleotide Therapy and Current Therapeutical Strategies in UrologyI.  Kausch1 , A.  Böhle1
  • 1Klinik für Urologie, Med. Universität Lübeck und Laborgruppe Immuntherapie, Forschungszentrum Borstel
Further Information

Publication History

Publication Date:
04 December 2003 (online)

Zusammenfassung

Antisense-Oligonukleotide sind kurzsträngige DNA-Sequenzen, durch die der Informationstransfer vom Gen zum Protein moduliert werden kann. Sie besitzen die umgekehrte, komplementäre Nukleotidabfolge der gewünschten Zielsequenz. Durch Hybridisierung mit der messenger-RNA (mRNA) eines spezifischen Proteins wird eine selektive Hemmung der Genexpression und Herunterregulation des Proteins induziert. Die Antisense-Technik ermöglicht so eine Therapie bereits auf molekularer Ebene und überdies die Untersuchung der Funktion einzelner Gene. Prinzipiell kann die Expression jedes Proteins inhibiert werden. In dieser Übersichtsarbeit werden die molekularen Grundlagen der Antisense-Therapie erörtert und die bisherigen urologischen Studien umfassend dargestellt. Präklinische Studien haben gezeigt, dass die Antisense-Technik ein viel versprechendes Konzept in der Onkologie darstellt. In derzeit laufenden klinischen Studien wird die Effektivität von Antisense-Oligonukleotiden gegen verschiedene unterschiedliche krebsassoziierte Gene untersucht. Obwohl in einigen dieser Studien auch urologische Patienten z. B. mit fortgeschrittenem Prostatakarzinom eingebracht wurden, befindet sich die Antisense-Therapie in der Urologie noch in den Anfängen.

Abstract

Antisense oligonucleotides are short DNA sequences designed to modulate the information transfer from gene to protein. Sequence-related hybridisation with the mRNA of a specific protein results in selective inhibition of gene expression and downregulation of protein expression. This allows the study of gene function and therapy on a molecular level. Antisense oligonucleotide inhibitors can be designed directly from genomic sequence information by simply making the reversed complement of the desired sequence. In this review, we focus on the mechanisms of action of antisense oligonucleotides and summarize the progress in urological antisense therapy. The ability to inhibit individual gene expression with antisense oligonucleotides has been promising in preclinical cancer models. Current clinical studies test antisense compounds targeted against various cancer related genes. Although some of these studies comprise patients with urological tumors, such as advanced prostate cancer, experimental antisense therapy in urology is still in its infancy.

Literatur

  • 1 Zamecnik P C, Stephenson M L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide.  Proc Natl Acad Sci. 1978;  75 280-284
  • 2 Marwick C. First “antisense” drug will treat CMV retinitis.  JAMA. 1998;  280 871
  • 3 Herschlag D. Implications of ribozyme kinetics for targeting the cleavage of specific RNA molecules in vivo: more isn't always better.  Proc Natl Acad Sci. 1991;  88 6921-6925
  • 4 Shaw J P, Kent K, Bird J, Fishback J, Froehler B. Modified deoxyoligonucleotides stable to exonuclease degradation in serum.  Nucl Acids Res. 1991;  19 747-750
  • 5 Neckers L M. Cellular internalization of oligodeoxynucleotides. In: Crooke ST, Lebleu B. Antisense Research and Applications Los Angeles, USA: CRC Press 1993 451: 451-460
  • 6 Agrawal S, Temsamani J, Tang J Y. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice.  Proc Natl Acad Sci USA. 1991;  88 7595-7599
  • 7 Schlingensiepen R, Brysch W, Schlingensiepen K H. Antisense - from technology to therapy. Lab manual and textbook. Williston, USA: Blackwell Science 1996 Vol. 6
  • 8 Levin A A. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides.  Biochim Biophys Acta. 1999;  1489 69-84
  • 9 Crooke R M, Graham M J, Cooke M E, Crooke S T. In vitro pharmacokinetics of phosphorothioate antisense oligonucleotides.  J Pharmacol Exp Ther. 1995;  275 462-473
  • 10 Krieg A M, Tonkinson J, Matson S, Zhao Q, Saxon M, Zhang L M, Yakubov L, Stein C A. Modification of antisense phosphodiester oligodeoxynucleotides by a 5′ cholesteryl moiety increases cellular association and improves efficacy.  Proc Natl Acad Sci. 1993;  90 1048-1052
  • 11 Tondelli L, Ricca A, Laus M, Lelli M, Citro G. Highly efficient cellular uptake of c-myb antisense oligonucleotides through specifically designed polymeric nanospheres.  Nucl Acids Res. 1998;  26 5425-5431
  • 12 Citro G, Perrotti D, Cucco C, D'Agnano I, Sacchi A, Zupi G, Calabretta B. Inhibition of leukemia cell proliferation by receptor-mediated uptake of c-myb antisense oligodeoxynucleotides.  Proc Nat Acad Sci. 1992;  89 7031-7035
  • 13 Wu G Y, Wu C H. Specific inhibition of hepatitis B viral gene expression in vitro by targeted antisense oligonucleotides.  J Biol Chem. 1992;  267 12 436-12 439
  • 14 Stein C A. Two problems in antisense biotechnology: in vitro delivery and the design of antisense experiments.  Biochim Biophys Acta. 1999;  1489 45-52
  • 15 Jaaskelainen I, Monkkonen J, Urtti A. Oligonucleotide-cationic liposome interactions. A physicochemical study.  Biochim Biophys Acta. 1994;  1195 115-123
  • 16 Bennett C F, Chiang M Y, Chan H, Shoemaker J E, Mirabelli C K. Cationic lipids enhance cellular uptake and activity of phosphorothiotae antisense oligonucleotides.  Mol Pharmacol. 1992;  41 1023-1033
  • 17 Mirabelli C K, Bennett C F, Anderson K, Crooke S T. In vitro and in vivo pharmacologic activities of antisense oligonucleotides.  Anticancer Drug Des. 1991;  6 647-661
  • 18 Kitajima I, Shinohara T, Bilakovics J, Brown D A, Xu X, Nerenberg M. Ablation of transplanted HTLV-I tax-transformed tumors in mice by antisense inhibition of NF-kappa B (letter).  Science. 1993;  259 1523
  • 19 Crooke S T. Molecular mechanisms of action of antisense drugs.  Biochim Biophys Acta. 1999;  1489 31-44
  • 20 Baker B F, Miraglia L, Hagedorn C H. Modulation of eucaryotic initiation factor-4E binding to 5′-capped oligoribonucleotides by modified anti-sense oligonucleotides.  J Biol Chem. 1992;  267 11 495-11 499
  • 21 Sierakowska H, Sambade M J, Agrawal S, Kole R. Repair of thalassemic human beta-globin mRNA in mammalian cells by antisense oligonucleotides.  Proc Natl Acad Sci. 1996;  93 12 840-12 844
  • 22 Krieg A M, Yi A K, Matson S, Waldschmidt T J, Bishop G A, Teasdale R, Koretzky G A, Klinman D M. CpG motifs in bacterial DNA trigger direct B-cell activation.  Nature. 1995;  374 546-549
  • 23 Klinman D M. Therapeutic applications of CpG-containing oligodeoxynucleotides.  Antisense nucleic acid drug dev. 1998;  8 181-184
  • 24 Yamamoto T, Yamamoto S, Kataoka T, Tokunaga T. Ability of oligonucleotides with certain palindromes to induce interferon production and augment natural killer cell activity is associated with their base length.  Antisense Res Dev. 1994;  4 119-122
  • 25 Moldoveanu Z, Love-Homan L, Huang W Q, Krieg A M. CpG DNA, a novel immune enhancer for systemic and mucosal immunization with influenza virus.  Vaccine. 1998;  16 1216-1224
  • 26 Wooldridge J E, Ballas Z, Krieg A M, Weiner G J. Immunostimulatory oligodeoxynucleotides containing CpG motifs enhance the efficacy of monoclonal antibody therapy of lymphoma.  Blood. 1997;  89 2994-2998
  • 27 Ramanathan M, Lantz M, MacGregor R D, Garavoy M R, Hunt C A. Characterization of the oligodeoxynucleotide-mediated inhibition of interferon-gamma-induced major histocompatibility complex class I and intercellular adhesion molecule-1.  J Biol Chem. 1994;  269 24 564-24 574
  • 28 Yaswen P, Stampfer M R, Ghosh K, Cohen J S. Effects of sequence of thioated oligonucleotides on cultured human mammary epithelial cells.  Antisense Res Dev. 1993;  3 67-77
  • 29 Agrawal S, Zhao Q. Antisense therapeutics.  Curr Opin Chem Biol. 1998;  2 519-528
  • 30 Sereni D, Tubiana R, Lascoux C, Katlama C, Taulera O, Bourque A, Dvorchik B, Martin R R. Pharmacokinetics and tolerability of intravenous trecovirsen (GEM 91), an antisense phosphorothioate oligonucleotide, in HIV-positive subjects.  J Clin Pharmacol. 1999;  39 47-54
  • 31 Cotter F E. Antisense therapy of hematologic malignancies.  Semin Hematol. 1999;  36 9-14
  • 32 Yuen A R, Halsey J, Fisher G A, Holmlund J T, Geary R S, Kwoh T J, Dorr A, Sikic B I. Phase I study of an antisense oligonucleotide to protein kinase C-α (ISIS 3521/CGP 64128A) in patients with cancer.  Clin Cancer Res. 1999;  5 3357-3363
  • 33 Patzel V, Steidl U, Kronenwett R, Haas R, Sczakiel G. A theoretical approach to select effective antisense oligodeoxyribonucleotides at high statistical probability.  Nucl Acids Res. 1999;  27 4328-4334
  • 34 Ho S P, Bao Y, Lesher T, Malhotra R, Ma L Y, Fluharty S J, Sakai R R. Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries.  Nat Biotechnol. 1998;  16 59-63
  • 35 Jain R K. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies.  J Natl Cancer Inst. 1989;  81 570-576
  • 36 Plenat F N, Klein-Monhoven B M, Vignaud J M, Duprez A. Cell and tissue distribution of synthetic oligonucleotides in healthy and tumorbearing mice.  Am J Path. 1995;  147 124-135
  • 37 Nishida E, Gotho Y. The MAP kinase cascade is essential for diverse signal transduction pathways.  Trends Biochem Sci. 1993;  18 128-131
  • 38 Daum G, Eisenmann-Tappe I, Fries H W, Troppmair J, Rapp U R. The ins and outs of RAF kinases.  Trends Biochem Sci. 1994;  19 474-480
  • 39 Cho-Chung Y S. Antisense oligonucleotide inhibition of serine/threonine kinases: an innovative approach to cancer treatment.  Pharmacol Ther. 1999;  82 437-449
  • 40 Bos J L. ras oncogenes in human cancer: a review.  Cancer Res. 1989;  49 4682-4699
  • 41 Adjei A A. Blocking oncogenic Ras signaling for cancer therapy.  J Natl Cancer Inst. 2001;  93 1062-1074
  • 42 Brown D, Yu Z P, Miller P. et al . Modulation of ras expression by antisense, nonionic deoxyoligonucleotide analogs.  Oncogene Res. 1989;  4 243-252
  • 43 Saison-Behmoaras T, Tocque B, Rey I. et al . Short modified antisense oligonucleotides directed against Ha-ras point mutation induce selective cleavage of the mRNA and inhibit T24 cells proliferation.  EMBO. 1991;  10 1111-1118
  • 44 Gray G D, Hernandez O M, Hebel D, Root M, Pow-Sang J M, Wickstrom E. Antisense DNA inhibition of tumor growth induced by c-Ha-ras oncogene in nude mice.  Cancer Res. 1993;  53 577-580
  • 45 Gordon M S, Sandler A B, Holmlund J T, Dorr A, Battiato L, Fife K, Geary R, Kwoh T J. A phase I trial of ISIS 2503, an antisense inhibitor of H-ras, administered by a 24-hour weekly infusion to patients with advanced cancer. Proc Am Soc Clin Oncol 1999 157 abstract
  • 46 Dorr A, Bruce J, Monia B, Johnston J, Geary R, Kwoh T J, Holmlund J T, Nemunaitis J. Phase I and pharmacokinetic trial of ISIS 2503, a 20-mer antisense oligonucleotide against H-ras, by 14-day continuous infusion in patients with advanced cancer. Proc Am Soc Clin Oncol 1999 157, abstract
  • 47 Marais R, Light Y, Paterson H F, Mason C S, Mashall C J. Differential regulation of Raf-1, A-Raf and B-Raf by oncogenic ras and tyrosine kinases.  J Biol Chem. 1997;  272 4378-4383
  • 48 Wang H G, Rapp U R, Reed J C. Bcl-2 targets the protein kinase RAF-1 to mitochondria.  Cell. 1996;  87 629-638
  • 49 Shimizu K, Nakatsu Y, Sekiguchi M, Hokamura K, Tanaka K, Terada M, Sugimura T. Molecular cloning of an activated human oncogene, homologous to v-raf, from primary stomach cancer.  Proc Natl Acad Sci. 1985;  82 5641-5645
  • 50 Fukui M, Yamamoto T, Kawai S, Maruo K, Toyoshima K. Detection of a raf-related and two other transforming DNA sequences in human tumors maintained in nude mice.  Proc Natl Acad Sci. 1985;  82 5954-5958
  • 51 Monia B P, Johnston J F, Geiger T, Müller M, Fabro D. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase.  Nature Med. 1996;  2 668-675
  • 52 Monia B P. Anti-tumor activity of C-raf antisense-correction.  Nat Med. 1999;  5 127
  • 53 Lau Q C, Brusselbach S, Muller R. Abrogation of c-Raf expression induces apoptosis in tumor cells.  Oncogene. 1998;  16 (14) 1899-1902
  • 54 Geiger T, Muller M, Monia B P, Fabbro D. Antitumor activity of a C-raf antisense oligonucleotide in combination with standard chemotherapeutic agents against various human tumors transplanted subcutaneously into nude mice.  Clin Cancer Res. 1997;  3 1179-1185
  • 55 Stevenson J P, Yao K S, Gallagher M, Friedland D, Mitchell E P, Cassella A, Monia B, Kwoh T J. Phase I clinical/pharmacokinetic and pharmacodynamic trial of the c-raf-1 antisense oligonucleotide ISIS 5132 (CGP69846A).  J Clin Oncol. 1999;  17 2227-2236
  • 56 Cunningham C C, Holmlund J T, Schiller J H, Geary R S, Kwoh T J, Dorr A, Nemunaitis J. A phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer.  Clin Cancer Res. 2000;  6 1607-1610
  • 57 Rudin C M, Holmlund J, Fleming G F, Mani S, Stadler W M, Schumm P, Monia B P, Johnston J F. Phase I trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-raf-1, administered by 24-hour weekly infusion to patients with advanced cancer.  Clin Cancer Res. 2001;  7 1214-1220
  • 58 Grandori C, Cowley S M, James L P, Eisenman R N. The Myc/Max/Mad network and the transcriptional control of cell behaviour.  Annu Rev Cell Dev Biol. 2000;  16 653-699
  • 59 DePinho R A, Schreiber-Agus N, Alt F W. myc family oncogenes in the development of normal and neoplastic cells.  Adv Cancer Res. 1991;  57 1-46
  • 60 Nesbit C E, Tersak J M, Prochownik E V. Myc oncogenes and human neoplastic disease.  Oncogene. 1999;  18 3004-3016
  • 61 Balaji K C, Koul H, Mitra S, Maramag C, Reddy P, Menon M, Malhotra R K, Laxmanan S. Antiproliferative effects of c-myc antisense oligonucleotide in prostate cancer cells: a novel therapy in prostate cancer.  Urology. 1997;  50 1007-1015
  • 62 Mizutani Y, Bonavida B, Fukumoto M, Yoshida O. Enhanced susceptibility of c-myc antisense oligonucleotide-treated human renal cell carcinoma cells to lysis by peripheral blood lymphocytes.  J Immunother Emphasis Tumor Immunol. 1995;  17 78-87
  • 63 Langzam L, Koren R, Gal R, Kugel V, Paz A, Farkas A, Sampson S R. Patterns of protein kinase C isoenzyme expression in transitional cell carcinoma of bladder. Relation to degree of malignancy.  Am J Clin Pathol. 2001;  116 377-385
  • 64 Yuspa S H. The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogensis-thirty-third G. H. A. Clowes Memorial Award Lecture.  Cancer Res. 1994;  54 1178-1189
  • 65 Dean N, McKay R, Miraglia L, Howard R, Cooper S, Giddings J, Nicklin P, Meister L. Inhibition of growth of human tumor cell lines in nude mice by an antisense oligonucleotide inhibitor of protein kinase C-α expression.  Cancer Res. 1996;  56 3499-3507
  • 66 Mani S, Rudin C M, Kunkel K, Holmlund J T, Geary R S, Kindler H L, Dorr F A, Ratain M J. Phase I clinical and pharmacokinetic study of protein kinase C-alpha antisense oligonucleotide ISIS 3521 administered in combination with 5-fluorouracil and leucovorin in patients with advanced cancer.  Clin Cancer Res. 2002;  8 1042-1048
  • 67 Villalona-Carlero M A, Figueroa J, Nadella P, Otterson G A, Snider P, Browning K, D'Amato N P, Geary R S. Phase I and pharmacokinetic (PK) study of the protein kinase C alpha (PKC-a) inhibitor ISIS-3521 in combination with cisplatin and gemcitabine in patients with solid malignancies. Florida: AACR-NCI-EORTC International Conference Miami Beach 2001, abstract
  • 68 Yuen A, Halsey J, Fisher G, Advani R, Moore M, Saleh M, Ritch P, Harker G. Phase II trial of ISIS 3521, an antisense inhibitor of PKC-a, with carboplatin and paclitaxel in non-small cell lung cancer: Update survival and time to progression data. Florida: AACR-NCI-EORTC International Conference Miami Beach 2001, abstract
  • 69 Gordge P C, Hulme M J, Clegg R A, Miller W R. Elevation of protein kinase A and protein kinase C activities in malignant as compared with normal human breast tissue.  Eur J Cancer. 1996;  32A 2120-2126
  • 70 Cho-Chung Y S. Role of cyclic AMP receptor proteins in growth, differentiation, and suppression of malignancy: new approaches to therapy.  Cancer Res. 1990;  50 7093-7100
  • 71 Wang H, Cai Q, Zeng X, Yu D, Agrawal S, Zhang R. Antitumor activity and pharmacokinetics of a mixed-backbone antisense oligonucleotide targeted to the RIalpha subunit of protein kinase A after oral administration.  Proc Nat Acad Sci. 1999;  96 13 989-13 994
  • 72 Chen H X, Marshall J L, Ness E, Martin R R, Dvorchik B, Rizvi N, Marquis J, McKinlay M. A safety and pharmacokinetic study of a mixed-backbone oligonucleotide (GEM231) targeting the type I protein kinase A by two-hour infusions in patients with refractory solid tumors.  Clin Cancer Res. 2000;  6 1259-1266
  • 73 Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, Pepe S, Bianco A R, Agrawal S. Cooperative inhibition of renal cancer growth by anti-epidermal growth factor receptor antibody and protein kinase A antisense oligonucleotide.  J Natl Cancer Inst. 1998;  90 1087-1094
  • 74 Chao D T, Korsmeyer S J. BCL-2 family: regulators of cell death.  Annu Rev Immunol. 1998;  16 395-419
  • 75 Green D R, Reed J C. Mitochondria and apoptosis.  Science. 1998;  281 1309-1312
  • 76 Gautschi O, Tschopp S, Olie R A, Leech S H, Simoes-Wust A P, Ziegler A, Baumann B, Odermatt B. Activity of a novel bcl-2/bcl-xL-bispecific antisense oligonucleotide against tumors of diverse histologic origins.  J Natl Cancer Inst. 2001;  93 463-471
  • 77 Miyake H, Tolcher A, Gleave M E. Antisense Bcl-2 oligodeoxynucleotides inhibit progression to androgen-independence after castration in the Shionogi tumor model.  Cancer Res. 1999;  59 4030-4034
  • 78 Miayake H, Tolcher A, Gleave M E. Chemosensitization and delayed androgen-independent recurrence of prostate cancer with the use of antisense Bcl-2 oligodeoxynucleotides.  J Natl Cancer Inst. 2000;  92 34-41
  • 79 Tolcher A W, Roth S, Wynne H, Quada J, Rowinsky E K, Thompson I M, Weitmann S, Izbicka E. G3139 (Genasense™) enhances docetaxel antitumor activity and leads to long-term survivors in the androgen-independent prostate cancer xenograph (PC3) model. Florida: AACR-NCI-EORTC International Conference Miami Beach 2001, abstract
  • 80 Dorai T, Olsson C A, Katz A E, Buttyan R. Development of a hammerhead ribozyme against bcl-2.1. Preliminary evaluation of a potential gene therapeutic agent for hormone-refractory human prostate cancer.  Prostate. 1997;  32 246-258
  • 81 Uchida T, Gao J-P, Sato T, Irie A, Iwamura M, Baba S. Antisense BCL-2 oligodeoxynucleotides enveloped in Lipofectin induces growth inhibition in human renal cell carcinoma in vitro and in nude mice. AUA Annual Meeting 2000 abstract
  • 82 Waters J, Webb A, Cunningham D, Clarke P A, di Stefano F, Raynaud B DB, Cotter F E. Results of a phase I clinical trial of bcl-2 antisense molecule G3139 (GENTA) in patients with non-Hodgkin's lymphoma. Proc Am Soc Clin Oncol 1999 4, abstract
  • 83 Morris M, Tong W, Osman I, Maslak P, Kelly W K, Terry K, Rosen N, Scher H I. A phase I/II dose-escalating trial of bcl-2 antisense (G3139) treatment by 14-day continuous intravenous infusion for patiens with androgen-independent prostate cancer or other advanced solid tumor malignancies. Proc Am Soc Clin Oncol 1999 323, abstract
  • 84 Jansen B, Wacheck V, Heere-Ress E, Schlagbauer-Wadl H, Hollenstein U, Lucas T, Eichler H-G, Wolff K. A phase I-II study with dacarbazine and bcl-2 antisense oligonucleotide G3139 (GENTA) as a chemosensitizer in patients with advanced malignant melanoma. Proc Am Soc Clin Oncol 1999 531, abstract
  • 85 Marcucci G, Byrd J C, Cataland S R, Fisher D B, Lucas D, Chen K K, Young D, Didier L A. Significant disease response to Genasense™ (Genta Inc) (GS), a bcl-2 antisense, in combination with chemotherapy in refractory (REF) or relapsed (REL) acute leukemia (AL). Florida: AACR-NCI-EORTC International Conference Miami Beach 2001
  • 86 Duggan B, Tschopp S, Zangemeister-Wittke U, Williamson K, Keane P, Johnston S R. BCL-2 and BCL-XL antisense as a gene therapy strategy in bladder cancer. Eur Urol 2001 39 (S5): 172, abstract
  • 87 Wojtowicz-Praga S. Reversal of tumor-induced immunosuppression: A new approach to cancer therapy.  J Immunother. 1997;  20 165-177
  • 88 Inge T H, Hoover S K, Susskind B M, Barrett S K, Bear H D. Inhibition of tumor-specific cytotoxic T-Lymphocyte responses by transforming growth factor β1.  Cancer Res. 1992;  52 1386
  • 89 Torre-Amione G, Beauchamp R DA, Koeppen H, Park B H, Schreiber H, Moses H L, Rowley D A. A highly immunogenic tumor transfected with murine transforming growth factor type β1 cDNA escapes immune surveillance.  Proc Natl Acad Sci USA. 1990;  87 1486-1490
  • 90 Tzai T-S, Lin C I, Shiau A L, Wu C L. Antisense oligonucleotide specific for transforming growth factor-beta1 inhibit both in vitro and in vivo growth of MBT-2 murine bladder cancer.  Anticancer Res. 1998;  18 1585-1590
  • 91 Kausch I, Lingnau A, Deinert I, Endl E, Jocham D, Gerdes J, Böhle A. Antisense therapy against the KI-67 MRNA - A new antitumoral approach. Eur Urol 2001 39 (suppl 5): 172, abstract
  • 92 Achenbach T V, Muller R, Slater E P. Synergistic antitumor effect of chemotherapy and antisense-mediated ablation of the cell cycle inhibitor p27KIP-1.  Clin Cancer Res. 2000;  6 3006-3014
  • 93 Wang H, Nan L, Shi Z, Agrawal S, Zhang R. Modulation of gene expression and inhibition of tumor growth by antisense anti-MDM2 oligonucleotides in prostate cancer. Florida: AACR-NCI-EORTC International Conference Miami Beach 2001
  • 94 Gnarra J R, Dressler G R. Expression of Pax-2 in human renal cell carcinoma and growth inhibition by antisense oligonucleotides.  Cancer Res. 1995;  55 4092-4098
  • 95 Kiyama S, Zellweger T, Miyake H, Gleave M. Antisense insulin-like growth factor binding protein-2 oligonucleotides induce apoptosis and delay progression to androgen-independence after castration in human prostae cancer tumor models. Eur Urol 2001 39 (S5): 94, abstract
  • 96 Eder I E, Culig Z, Ramoner R, Thurnher M, Putz T, Nessler-Menardi C, Tiefenthaler M, Bartsch G. Inhibition of LncaP prostate cancer cells by means of androgen receptor antisense oligonucleotides.  Cancer Gene Ther. 2000;  7 997-1007

Prof. Dr. med. A. Böhle

Klinik für Urologie · Medizinische Universität zu Lübeck

Ratzeburger Allee 160

23538 Lübeck

Phone: 0451-500-6112

Fax: 0451-500-6112

Email: boehle@medinf.mu-luebeck.de

    >