Zusammenfassung
Fragestellung und Methodik
Angiogenese, die Bildung von neuen Gefäßen aus bereits existierenden Kapillaren, findet unter physiologischen Bedingungen beim Erwachsenen selten statt. Einzig in weiblichen Geschlechtsorganen findet man während der fertilen Phase regelmäßig eine kontrollierte Angiogenese und zwar im Ovar während der Follikelreifung und der Bildung des Gelbkörpers, im Endometrium während des Menstruationszyklus und in der Plazenta und der wachsenden Brustdrüse während der Schwangerschaft. Die Ausbildung eines funktionierenden Gefäßnetzes ist für die Fertilität und auch für die Versorgung des wachsenden Embryos eine essenzielle Voraussetzung. Um im Bedarfsfall die Ausbildung des Gefäßnetzes verbessern zu können, ist die Kenntnis der wirkenden molekularen Mechanismen notwendig. Wir wissen heute, dass Angiogenese durch das Zusammenspiel verschiedener Faktoren (Wachstumsfaktoren, matrixdegradierende Proteasen, extrazelluläre Matrixproteine) kontrolliert wird. In dieser Arbeit stellen wir ein experimentelles System vor, das erlaubt, die Wirkung von Faktoren, einzeln und in Kombination, auf die terminale Differenzierung von lumenbildenden Endothelzellen zu untersuchen.
Schlussfolgerung
Der Vorteil des hier vorgestellten dreidimensionalen Zellkultursystems ist vor allem die Berücksichtigung der Funktion der extrazellulären Matrix zum einen als Zellgerüst, aber vor allen Dingen auch als Reservoir für Wachstumsfaktoren, die - je nach metabolischer Zellaktivität - freigesetzt werden und wiederum Zellmetabolismus und -physiologie regulieren.
Abstract
Purpose and Methods
Angiogenesis is the formation of new vessels from preexisting capillaries. Under physiological conditions angiogenesis is a rare event in the adult except in females during their reproductive period, where controlled angiogenesis occurs in the ovary during maturation of the follicle and formation of the corpus luteum and in the uterus during the endometrial secretory phase. During pregnancy angiogenesis occurs in the placenta and the growing mammary glands. Angiogenesis is essential for fertility and to ensure an adequate blood supply for the growing embryo. In order to improve angiogenesis it is essential to know the underlying molecular mechanisms. We know by now that angiogenesis is controlled by the concerted interaction of a variety of factors (e.g. growth factors, extracellular matrix proteins, and matrix proteases). Here, we present and metabolically characterize an experimental system that allows investigation of individual factors as well as their concerted interaction on the process of terminal cell differentiation.
Conclusion
By means of this three dimensional experimental system the function of the extracellular matrix, as it is understood today, is clearly mimicked. It serves as a cellular lattice on the one hand but also as a reservoir for growth factors that are sequestered and released according to the cellular metabolism.
Schlüsselwörter
Kollagengele - Angiogenese - Elektromikroskopie - Osteopontin
Key words
Collagen gels - angiogenesis - electron microscopy - osteopontin
Literatur
1
Ancelin M, Buteau-Lozano H, Meduri G, Osborne-Pellegrin M, Sordello S, Plouet J, Perrot-Applanat M.
A dynamic shift of VEGF isoforms with a transient and selective progesterone-induced expression of VEGF189 regulates angiogenesis and human uterus.
Proc Natl Acad Sci USA.
2002;
99
6023-6028
2
Chomczynski P, Sacchi N.
Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.
Anal Biochem.
1987;
162
156-159
3
Denhardt D T, Noda M, O'Regan A W, Pavlin D, Berman J S.
Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival.
J Clin Invest.
2001;
107
1055-1061
4
Drevs J, Unger C.
Karzinomentstehung und Tumortherapie. Aktuelle Wertigkeit der Antiangiogenese.
Geburtsh Frauenheilk.
2001;
61
912-913
5
Gargett C E, Rogers P AW.
Human endometrial angiogenesis.
Reproduction.
2001;
121
181-186
6
Gordon J D, Shifren J L, Foulk R A, Taylor R N, Jaffe R B.
Angiogenesis in the human female reproductive tract.
Obstet Gynecol Surv.
1995;
50
688-697
7
Ghosh D, Sharkey A M, Charnock-Jones D S, Dhawan L, Dhara S, Smith S K, Sengupta J.
Expression of vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) in conceptus and endometrium during implantation in the rhesus monkey.
Mol Hum Reprod.
2000;
6
935-941
8
Goppelt-Struebe M, Wiedemann T, Heusinger-Ribeiro J, Vucadinovic M, Rehm M, Prols F.
Cox-2 and osteopontin in cocultured platelets and mesangial cells: role of glucocorticoids.
Kidney Int.
2000;
57
2229-2238
9
Gudjonsson T, Ronnov-Jessen L, Villadsen R, Bissell M J, Petersen O W.
To create the correct microenvironment: three-dimensional heterotypic collagen assays for human breast epithelial morphogenesis and neoplasia.
Methods.
2003;
30
247-255
10
Houck K A, Ferrara N, Winer J, Cachianes G, Li B, Leung D W.
The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA.
Mol Endocrinol.
1991;
5
1806-1814
11
Houck K A, Leung D W, Rowland A M, Winer J, Ferrara N.
Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms.
J Biol Chem.
1992;
267
26031-26037
12
Kayisli U A, Mahutte N G, Arici A.
Uterine chemokines in reproductive physiology and pathology.
Am J Reprod Immunol.
2002;
47
213-221
13
Khan S A, Lopez-Chua C A, Zhang J, Fiser L W, Sorensen E S, Denhardt D T.
Soluble osteopontin inhibits apoptosis of adherent endothelial cells deprived of growth factors.
J Cell Biochem.
2002;
85
728-736
14
Marx M, Perlmutter R A, Madri J A.
Modulation of platelet-derived growth factor receptor expression in microvascular endothelial cells during in vitro angiogenesis.
J Clin Invest.
1994;
93
131-139
15
Meduri G, Bausero P, Perrot-Applanat M.
Expression of vascular endothelial growth factor receptors in the human endometrium: modulation during the menstrual cycle.
Biol Reprod.
2000;
62
439-447
16
Mundhenke C, Maass N, Jonat W, Friedl A.
FGF-2-Interaktionen in Mammakarzinomen und gesundem Brustdrüsengewebe.
Geburtsh Frauenheilk.
2002;
62
962-966
17
Pepper M S, Vassalli J D, Orci L, Montesano R.
Biphasic effect of transforming growth factor-beta 1 on in vitro angiogenesis.
Exp Cell Res.
1993;
204
356-363
18
Peters K, Schmidt H, Unger R E, Otto M, Kamp G, Kirkpatrick C J.
Software-supported image quantification of angiogenesis in an in vitro culture system: application to studies of biocompatibility.
Biomaterials.
2002;
23
3413-3419
19
Plouet J, Moro F, Bertagnolli S, Coldeboeuf N, Marzagguil H, Clamens S, Bayard F.
Extracellular cleavage of the vascular endothelial growth factor 189-amino acid form by urokinase is required for its mitogenic effect.
J Biol Chem.
1997;
272
13390-13396
20
Pröls F, Loser B, Marx M.
Differential expression of osteopontin, PC4, and CEC5, a novel mRNA species, during in vitro angiogenesis.
Exp Cell Res.
1998;
239
1-10
21
Pröls F, Heidgress D, Rupprecht H D, Marx M.
Regulation of osteopontin expression in rat mesangial cells.
FEBS Letters.
1998;
422
15-18
22
Pröls F, Mayer M P, Renner O, Czarnecki P G, Ast M, Gässler C, Wilting J, Kurz H, Christ B.
Upregulation of the cochaperone Mdg1 in endothelial cells is induced by stress and during in vitro angiogenesis.
Exp Cell Res.
2001;
269
42-53
23
Racine-Samson L, Rockey D C, Bissell D M.
The role of alpha1beta1 integrin in wound contraction. A quantitative analysis of liver myofibroblasts in vivo and in primary culture.
J Biol Chem.
1997;
272
30911-30917
24
Sage E H.
Regulation of interactions between cells and extracellular matrix: a command performance on several stages.
J Clin Invest.
2001;
107
781-783
25
Steiner E, Hofmann M, Weikel W, Beck T, Brockerhoff P.
Wiederholungsrisiko der Plazentainsuffizienz aus klinischer und morphologischer Sicht.
Geburtsh Frauenheilk.
2001;
61
285-289
26
Sterzel R B, Lovett D H, Foellmer H G, Perfetto M, Biemesderfer and Kashgarian D M.
Mesangial cell hillocks. Nodular foci of exaggerated growth of cells and matrix in prolonged culture.
Am J Pathol.
1986;
125
130-140
27
Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes and Abraham J CJA.
The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing.
J Biol Chem.
1991;
266
11947-11954
28
Weintraub A S, Giachelli C M, Krauss R S, Almeida M, Taubman M B.
Autocrine secretion of osteopontin by vascular smooth muscle cells regulates their adhesion to collagen gels.
Am J Pathol.
1996;
149
259-272
Felicitas Pröls
Institut für Anatomie II Albert-Ludwigs-Universität
Albertstraße 17
79104 Freiburg
Email: felicitas.proels@anat.uni-freiburg.de