References
<A NAME="RD21603ST-1">1</A>
Lindsay KB.
Tang M.
Pyne SG.
Synlett
2002,
731
<A NAME="RD21603ST-2">2</A>
Lindsay KB.
Pyne SG.
J. Org. Chem.
2002,
67:
7774
For the application of the ring-closing metathesis reaction to the synthesis of aza-sugars
see:
<A NAME="RD21603ST-3A">3a</A>
Huwe CM.
Blechert S.
Tetrahedron Lett.
1995,
36:
1621
<A NAME="RD21603ST-3B">3b</A>
Overkleeft HS.
Pandit UK.
Tetrahedron Lett.
1996,
37:
547
<A NAME="RD21603ST-3C">3c</A>
Huwe CM.
Blechert S.
Synthesis
1997,
61
<A NAME="RD21603ST-3D">3d</A>
White JD.
Hrnciar P.
Yokochi AFT.
J. Am. Chem. Soc.
1998,
120:
7359
<A NAME="RD21603ST-3E">3e</A>
Lindstrom UM.
Somfai P.
Tetrahedron Lett.
1998,
39:
7173
<A NAME="RD21603ST-3F">3f</A>
Ovaa H.
Stragies R.
van der Marcel GA.
van Boom JH.
Blechert S.
Chem. Commun.
2000,
1501
<A NAME="RD21603ST-3G">3g</A>
Subramanian T.
Lin C.-C.
Lin C.-C.
Tetrahedron Lett.
2001,
42:
4079
<A NAME="RD21603ST-3H">3h</A>
Klitze CF.
Pilli RA.
Tetrahedron Lett.
2001,
42:
5605
<A NAME="RD21603ST-3I">3i</A>
Chandra KL.
Chandrasekhar M.
Singh VK.
J. Org. Chem.
2002,
67:
4630
For the application of the ring-closing metathesis reaction to the synthesis of 2,5-dihydropyrroles
from dienes see:
<A NAME="RD21603ST-4A">4a</A>
Huwe CM.
Velder J.
Blechert S.
Angew. Chem., Int. Ed. Engl.
1996,
35:
2376
<A NAME="RD21603ST-4B">4b</A>
Fürstner A.
Picquet M.
Bruneau C.
Dixneuf PH.
Chem. Commun.
1998,
1315
<A NAME="RD21603ST-4C">4c</A>
Cerezo S.
Cortes J.
Moreno-Manas M.
Pleixats R.
Roglans A.
Tetrahedron
1998,
54:
14869
<A NAME="RD21603ST-4D">4d</A>
Fürstner A.
Ackermann L.
Chem. Commun.
1999,
95
<A NAME="RD21603ST-4E">4e</A>
Bujard M.
Briot A.
Gouverneur V.
Mioskowski C.
Tetrahedron Lett.
1999,
40:
8795
<A NAME="RD21603ST-4F">4f</A>
Fürstner A.
Liebl M.
Hill AF.
Wilton-Ely JDET.
Chem. Commun.
1999,
601
<A NAME="RD21603ST-4G">4g</A>
Ackermann L.
Fürstner A.
Weskamp T.
Kohl FJ.
Hermann WA.
Tetrahedron Lett.
1999,
40:
4787
<A NAME="RD21603ST-4H">4h</A>
Ahmed M.
Barrett AGM.
Braddock DC.
Cramp SM.
Procopiou PA.
Tetrahedron Lett.
1999,
40:
8657
<A NAME="RD21603ST-4I">4i</A>
Evans PA.
Robinson JE.
Org. Lett.
1999,
1:
1929
<A NAME="RD21603ST-4J">4j</A>
Hunt JCA.
Laurent P.
Moody CJ.
Chem. Commun.
2000,
1771
<A NAME="RD21603ST-5A">5a</A>
Huwe CM.
Kiehl OC.
Blechert S.
Synlett
1996,
67
<A NAME="RD21603ST-5B">5b</A>
Agami C.
Couty F.
Rabasso N.
Tetrahedron Lett.
2000,
41:
4113
<A NAME="RD21603ST-5C">5c</A>
Martín R.
Moyano A.
Pericàs MA.
Riera A.
Org. Lett.
2000,
2:
93
<A NAME="RD21603ST-5D">5d</A>
Agami C.
Couty F.
Rabasso N.
Tetrahedron
2001,
57:
5393
<A NAME="RD21603ST-5E">5e</A>
Fustero S.
Navarro A.
Pina B.
Soler Juan G.
Bartolome A.
Asensio A.
Simon A.
Bravo P.
Fronza G.
Volonterio A.
Zanda M.
Org. Lett.
2001,
3:
2621
<A NAME="RD21603ST-6">6</A> For the RCM of 4-allyl-5-allyl-2-oxazilidinones and its 5-homo analogue see:
Agami C.
Couty F.
Rabasso N.
Tetrahedron Lett.
2001,
42:
4633
<A NAME="RD21603ST-7">7</A>
Data for compound 2a: MS (CI+): m/z (%) = 126(100). HRMS (CI+) calcd for C6H8NO2: 126.05549 [M + 1]. Found: 126.05520. 1H NMR (300 MHz, CDCl3): δ = 3.82 (1 H, ddq, J = 15.5, 4.4 and 1.5 Hz, H5a), 4.26 (1 H, dd, J = 8.5 and 5.0 Hz, H7a), 4.38 (1 H, ddt, J = 15.5, 2.9, 2.1 Hz, H5b), 4.62 (1 H, t, J = 8.8 Hz, H4a), 4.74 (1 H, m, H4b), 5.93, 6.06 (2 × 1 H, m, H6 and H7). 13C NMR (75 MHz, CDCl3): δ = 54.6 (t, C5), 64.5 (d, C7a), 68.6 (t, C4), 128.9, 130.6 (d, C6 and C7), 163.2
(s, C2).
<A NAME="RD21603ST-8">8</A>
Typical RCM Reaction Procedure: The oxazolidinone 1b (165 mg, 0.483 mmol) was dissolved in freshly distilled and dried CH2Cl2 (120 mL), then Grubbs I catalyst (80 mg, 0.097 mmol) was added. The mixture was heated
at reflux under a N2 atmosphere for 20 h then cooled, before all volatiles were removed in vacuo to give
an oil. The pure product 2b was obtained by column chromatography (increasing polarity from 30% to 60% EtOAc
in petroleum ether as eluant) as a clear oil (110 mg, 0.347 mmol, 72%). Compound 2b: [α]D
30 -33.8 (c 0.89, CHCl3). MS (CI+): m/z (%) = 316(21) [M - 1], 318(8) [M + 1]. HRMS (CI+) calcd for C18H22NO4: 316.15220 [M - 1]. Found: 316.15472. 1H NMR (300 MHz, CDCl3): δ = 1.40-2.00 (6 H, m, H7, H8, H9), 3.44 (2 H, t, J = 6.3 Hz, H10), 3.77 (3 H, s, H16), 3.72-3.82 (1 H, m, H2), 4.22-4.38 (3 H, m, H2,
H5), 4.40 (2 H, s, H11), 5.78-5.85 (1 H, m, H3), 5.95-6.02 (1 H, m, H4), 6.85 (2 H,
dt, J = 8.7, 2.7 Hz, H14), 7.23 (2 H, dt, J = 8.7, 2.7 Hz, H13). 13C NMR (75 MHz, CDCl3): δ = 21.3 (t, C8), 29.2, 34.9 (t, C7, C9), 54.4 (t, C5), 55.1 (q, C16), 69.3 (t,
C10), 70.3 (d, C2), 72.4 (t, C11), 81.8 (d, C6), 113.6 (d, C14), 128.5 (d, C3), 129.1
(d, C13), 1 30.4 (s, C12), 130.5 (d, C4), 159.0 (s, C15), 162.5 (s, C17).
<A NAME="RD21603ST-9">9</A>
Compounds 1a (R = Ph) and 1c were prepared by conversion of their corresponding 2-amino alcohols to their N-Boc derivatives [(Boc)2O, Et3N] followed by cyclization to the oxazolidinone with NaH, THF and at r.t. These starting
2-amino alcohols were prepared via the Petasis reaction
[10]
of trans-2-phenylvinylboronic acid, allyl amine and either 2-hydroxylacetaldehyde dimer or
d-xylose, respectively. All other substrates were prepared from the aminolysis of their
corresponding chiral vinyl epoxides with the corresponding allylamine,
[1]
[2]
followed by oxazolidinone formation as described above or by using triphosgene/triethylamine.
<A NAME="RD21603ST-10">10</A>
Petasis NA.
Zavialov IA.
J. Am. Chem. Soc.
1998,
120:
11798
<A NAME="RD21603ST-11">11</A>
Synthesis of 13 and 14: To a solution of 2a (50 mg, 0.400 mmol) in acetone (2.4 mL) and H2O (1.6 mL) was added 4-methylmorphilone-N-oxide (103 mg, 0.880 mmol) followed by potassium osmate dihydrate (7.4 mg, 0.020
mmol). The mixture was stirred at r.t. in a sealed flask for 24 h, then all volatiles
were evaporated in vacuo to give a dark oil. The pure product was obtained by column
chromatography using gradient elution with increasing polarity from 5% to 15% MeOH
in CH2Cl2. This gave compound 13 (48 mg, 0.306 mmol, 76%) as a white crystalline solid. Mp 124-128 °C(dec) (Et2O). MS (CI+): m/z (%) = 160(100). HRMS (CI+) calcd for C6H10NO4: 160.06098 [M + 1]. Found: 160.06067. 1H NMR (500 MHz, D2O): δ = 3.24 (1 H, dd, J = 11.1, 8.1 Hz), 3.59 (1 H, dd, J = 11.1, 8.1 Hz), 4.09 (1 H, t, J = 3.0 Hz), 4.19-4.24 (1 H, m), 4.57-4.63 (3 H, m). 13C NMR (75 MHz, D2O): δ = 49.4 (t), 62.2 (d), 65.0 (t), 71.3 (d), 73.9 (d), 164.8 (s).
To a solution of 13 (50 mg, 0.314 mmol)in absolute EtOH (4 mL) was added NaOH (126 mg, 3.14 mmol). The
mixture was heated at reflux for 1 d, followed by evaporation of all volatiles in
vacuo to give a brown oil. Pure 14 was obtained by ion exchange chromatography as a white crystalline solid (40 mg,
0.300 mmol, 96%). Mp 140 °C(dec). Ion exchange chromatography was performed using
Dowex 50WX8-100 acidic cation exchange resin, packed by the slurry method in a 5 mm
diameter column. The compound was applied as its HCl salt dissolved in distilled H2O. After washing with H2O (100 mL) the compound was eluted from the resin using 14% aq NH3 solution. Compound 14 had identical spectral data to that described in the literature for this compound.
[12]
<A NAME="RD21603ST-12">12</A>
Huang Y.
Dalton DR.
J. Org. Chem.
1997,
62:
372
<A NAME="RD21603ST-13">13</A>
de Vicente J.
Arrayas RG.
Canada J.
Carretero JC.
Synlett
2000,
53
<A NAME="RD21603ST-14">14</A>
Mukai C.
Sugimoto Y.-i.
Miyazawa K.
Yamaguchi S.
Hanaoka M.
J. Org. Chem.
1998,
63:
6281