Synlett 2004(1): 73-76  
DOI: 10.1055/s-2003-43354
LETTER
© Georg Thieme Verlag Stuttgart · New York

Highly Stereoselective Reduction of β-Keto Amides: The First General and Efficient Approach to N-mono- and non-Substituted anti-α-Alkyl β-Hydroxy Amides

Giuseppe Bartoli*a, Marcella Boscoa, Enrico Marcantonib, Paolo Melchiorrea, Samuele Rinaldia, Letizia Sambria
a Dipartimento di Chimica Organica ‘A. Mangini’, Università di Bologna, v.le Risorgimento 4, 40136 Bologna, Italy
b Dipartimento Scienze Chimiche, Università di Camerino, via S.Agostino 1, 62032 Camerino, (MC), Italy
Fax: +39(51)2093654; e-Mail: giuseppe.bartoli@unibo.it;
Further Information

Publication History

Received 26 September 2003
Publication Date:
26 November 2003 (online)

Abstract

The first general protocol for the anti-selective reduction of α-alkyl-β-keto amides is described. This simple and efficient methodology based on an open-chain Felkin-Anh model pathway, allows the isolation of N-mono- and non-substituted anti-α-substituted β-hydroxy amides in good yields and with high diastereo­selectivity.

    References

  • For some reviews, see:
  • 1a Heathcock CH. In Asymmetric Synthesis   Part B, Vol. 3:  Morrison JD. Academic Press; New York: 1984.  Chap. 2.
  • 1b Kim BM. Williams SF. Masamune S. In Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Pergamon Press; Oxford: 1991.  Chap. 1. p.239 
  • 1c Evans DA. Nelson JV. Taber TR. Top. Stereochem.  1982,  13:  1 
  • 1d Heathcock CH. Science  1981,  214:  395 
  • For recent direct catalytic asymmetric aldol reactions, see:
  • 2a Northrup AB. MacMillan DWC. J. Am. Chem. Soc.  2002,  124:  6798 
  • 2b List B. Lerner RA. Barbas CF. J. Am. Chem. Soc.  2000,  122:  2395 
  • 2c Yoshikawa N. Kumagai N. Matsunaga S. Moll G. Oshima T. Suzuki T. Shibasaki M. J. Am. Chem. Soc.  2001,  123:  2466 
  • 2d Trost BM. Ito H. J. Am. Chem. Soc.  2000,  122:  12003 
  • 3 Greeves N. In Comprehensive Organic Synthesis   Vol. 7:  Trost BM. Fleming I. Pergamon Press; Oxford: 1991.  p.1 
  • 4a a-Alkyl b-hydroxy sulfones: Bartoli G. Bosco M. Cingolani S. Marcantoni E. Sambri L. J. Org. Chem.  1998,  63:  3624 
  • 4b a-Alkyl b-hydroxy esters: Marcantoni E. Alessandrini S. Malavolta M. Bartoli G. Bellucci MC. Sambri L. Dalpozzo R. J. Org. Chem.  1999,  64:  1986 
  • 4c a-Alkyl b-hydroxy ketones: Bartoli G. Bellucci MC. Bosco M. Dalpozzo R. Marcantoni E. Sambri L. Chem.-Eur. J.  2000,  14:  2590 
  • 4d a-Alkyl b-hydroxy carbonitriles: Dalpozzo R. Bartoli G. Bosco M. De Nino A. Procopio A. Sambri L. Tagarelli A. Eur. J. Org. Chem.  2001,  2971 
  • 5 Wild H. Kant J. Walker DG. Ojima I. Ternansky RJ. Morin JM. Georg GI. Ravikumar VT. In The Organic Chemistry of β-lactams   Georg GI. VCH Publishers; New York: 1993. ; and references therein
  • 6a Mead KT. Park M. Tetrahedron Lett.  1995,  36:  1205 
  • 6b Brown HC. Kulkarni SV. Racherla US. J. Org. Chem.  1994,  59:  365 
  • 6c Hanessian S. Tehim A. Chen P. J. Org. Chem.  1993,  58:  7768 
  • 7 Oishi T. Nakata T. Acc. Chem. Res.  1984,  17:  338 
  • 8a For a synthesis of anti-N-mono- and non-substituted β-hydroxy amides via 2-iminooxetane, see: Barbaro G. Battaglia A. Giorgianni P. J. Org. Chem.  1992,  57:  5128 
  • 8b For a recent asymmetric approach, see: Kitagawa O. Momose S.-i. Yamada Y. Shiro M. Taguchi T. Tetrahedron Lett.  2001,  42:  4865 
  • 9 Ito Y. Katsuki T. Yamaguchi M. Tetrahedron Lett.  1985,  26:  4643 
  • 10a Fujita M. Hiyama T. J. Am. Chem. Soc.  1985,  107:  8294 
  • 10b Fujita M. Hiyama T. J. Org. Chem.  1988,  53:  5405 
  • For diastereoselective syntheses of N-disubstituted syn- or anti-β-hydroxy amides, see:
  • 11a Ganesan K. Brown HC. J. Org. Chem.  1994,  59:  7346 
  • 11b Denmark SE. Griedel BD. Coe DM. Schnute ME. J. Am Chem. Soc.  1994,  116:  7026 
  • 11c Evans DA. Tedrow JS. Shaw JT. Downey CW. J. Am Chem. Soc.  2002,  124:  392 
  • 11d Evans DA. Downey CW. Hubbs JD. J. Am Chem. Soc.  2003,  125:  8706 
  • The syn-reduction of β-keto amides is based on the preliminary formation of a chelate complex intermediate; see:
  • 12a Bartoli G. Bosco M. Dalpozzo R. Marcantoni E. Massaccesi M. Rinaldi S. Sambri L. Tetrahedron Lett.  2001,  42:  8811 
  • 12b Fujita M. Hiyama T. J. Org. Chem.  1988,  53:  5415 
  • 12c Taniguchi M. Fujii H. Oshima K. Utimoto K. Tetrahedron  1993,  49:  11169 
  • 13a Chérest M. Felkin H. Prudent N. Tetrahedron Lett.  1968,  2199 
  • 13b Anh NT. Einsenstein O. Nouv. J. Chem.  1977,  1:  61 
  • 14a Bürgi HB. Dunitz JD. Shefter EJ. J. Am. Chem. Soc.  1973,  95:  5065 
  • 14b Bürgi HB. Dunitz JD. Lehn JM. Wipff G. Tetrahedron  1974,  30:  1563 
  • 14c Bürgi HB. Lehn JM. Wipff G. J. Am Chem. Soc.  1974,  96:  1956 
  • 15 Bartoli G. Bosco M. Dalpozzo R. Marcantoni E. Sambri L. Chem.-Eur. J.  1997,  3:  1941 ; for related systems, see ref. 4
  • 16 Evans DA. Ennis MD. Le T. J. Am Chem. Soc.  1984,  106:  1154 
  • 17 The use of a less hindered silylating agent results in a reduced anti-selectivity of the process. This is consistent with a Felkin-Anh model in which the presence of a bulky group on the oxygen of the intermediate 3 (Scheme 2) promotes the selective approach of the hydride anion to the b-carbonyl from the opposite side. For the importance of using bulky silylated reagents to effectively prevent chelation, see: Chen X. Hortelano ER. Eliel EL. J. Am Chem. Soc.  1990,  112:  6130 
18

Compound 4a was isolated by chromatography (pentane/Et2O) in 87% yield, anti/syn>99/1. 1H NMR (300 MHz, CDCl3): δ = 0.86 (d, 3 H, J HH = 7.2 Hz), 0.90-1.00 (m, 21 H), 2.45-2.50 (m, 1 H), 2.79 (d, 3 H, J HH = 4.8 Hz), 4.91 (d, 1 H, J HH = 7.8 Hz), 5.80 (br s, 1 H, NH), 7.20-7.35 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 12.3 (CH), 14.1 (CH3), 17.7 (CH3), 17.8 (CH3), 26.0 (CH3), 50.5 (CH), 77.4 (CH), 126.9 (CH), 127.5 (CH), 127.8 (CH), 142.7 (C), 175.1 (C).

19

A typical case is reported: ( R *, S *)-2-ethyl-3-hydroxy- N -methylhexanamide ( 2h). [20] The title compound was isolated by column chromatography (CH2Cl2/EtOAc) as a white solid (mp = 135-137 °C); yield 77%; anti/syn = 99/1. 1H NMR (300 MHz, CDCl3): δ = 0.85-0.95 (m, 6 H, 2 × CH3), 1.30-1.55 (m, 4 H), 1.55-1.70 (m, 1 H, CH2), 1.70-1.85 (m, 1 H, CH2), 1.95-2.05 (m, 1 H, CH), 2.80 (d, 3 H, CH3, J HH = 4.8 Hz), 3.00 (bs, 1 H, OH), 3.60-3.70 (m, 1 H, CH), 6.00 (br s, 1 H, NH). 13C NMR (75 MHz, CDCl3): δ = 12.0 (CH3), 14.0 (CH3), 19.2 (CH2), 23.6 (CH2), 25.9 (CH3), 38.2 (CH2), 53.5 (CH), 71.9 (CH), 176.2 (C). Anal. Calcd for C9H19NO2: H, 11.05; C, 62.39; N, 8.08. Found: H, 11.36; C, 62.18; H, 7.90.

20

Descriptors R*, S* indicate that diastereomeric compounds are obtained as racemates. We prefer this terminology to avoid the ambiguities that could arise from syn-anti descriptors.