Zusammenfassung
Ziel der vorliegenden Studie ist 1) die Ermittlung der optimalen Aushärtungszeit
für zwei verschiedene für die Befestigung von lingualen Kleberetainern entwickelte
Kompositmaterialien. Dabei wurde mit einer konventionellen und einer leistungsstarken
Halogenleuchte sowie mit einer Lichtbogenlampe ausgehärtet und das Ergebnis anhand
der Oberflächenhärte nach Vickers ü berprüft. Außerdem wurde 2) überprüft, welche
der drei Lichtquellen bei ein und demselben Kompositmaterial eine vergleichbare Oberflächenhärte
zur Folge hatte. Als Maß für die Güte der Polymerisation wurde die Oberflächenhärte
nach Vickers (HV) untersucht. Bei den verwendeten Lichtpolymerisationsgeräten handelte
es sich um ein Power PAC (ADT), eine Lichtbogenlampe, und eine Optilux 501 (Kerr),
eine lichtstarke Halogenlampe. Beide Geräte wurden mit einer Ortholux XT (3M), einer
konventionellen Halogenleuchte, verglichen. Als kieferorthopädische Kompositmaterialien
wurden Transbond Lingual Retainer (3M) und Light Cure Retainer (Reliance) untersucht.
Als Gegenprobe diente das Autopolymerisat Concise (3M), sowohl in normal angemischter
als auch in einer verdünnten Form. Transbond Lingual Retainer ließ sich mit dem Power
PAC innerhalb von 6 Sekunden aushärten, mit der Optilux 501 in 10 Sekunden und mit
der konventionellen Halogenlampe in 20 Sekunden. Light Cure Retainer benötigte für
die Aushärtung demgegenüber 15 Sekunden mit dem Power PAC, 10 Sekunden mit der Optilux
501 und 40 Sekunden mit der konventionellen Ortholux XT. Die Endhärten nach Vickers
betrugen für Transbond Lingual Retainer, Concise normal, Concise verdünnt und Light
Cure Retainer 62,8, 52,4, 46,0 bzw. 40,4. Innerhalb der einzelnen Materialgruppen
ergaben sich hinsichtlich der Endhärte keine statistisch signifikanten Unterschiede
zwischen den verwendeten Polymerisationslampen. Demgegenüber ergaben sich zwischen
den einzelnen Kompositmaterialien statistisch signifikante Unterschiede in der Endhärte.
Lichtbogenlampen oder lichtstarke Halogenleuchten ermöglichen die Aushärtung von
Kompositmaterialien in deutlich kürzerer Zeit, als konventionelle Halogenpolymerisationslampen.
Die Endhärte der Oberfläche als Gradmesser für die Güte der Polymerisation scheint
für alle drei Geräte vergleichbar zu sein. Daher empfiehlt sich in der Praxis der
Einsatz von lichtstarken Halogen- bzw. Lichtbogenlampen zur Verkürzung der Arbeitszeit
am Patienten.
Abstract
The present study aims to 1) identify the optimum cure times of 2 different lingual
retainer adhesives with a conventional halogen, a fast halogen and a plasma arc light
through measurement of Vickers surface hardness and 2) to determine whether different
lights produce similar surface hardness values for the same adhesive resin material.
The investigated polymerization characteristic was Vickers surface hardness (VHN).
The investigated plasma arc curing unit was Power Pac (ADT) and fast halogen was
Optilux 501 (Kerr). The conventional curing unit Ortholux XT (3M) was used as baseline.
Evaluated orthodontic lingual retainer adhesives were Transbond LR (3M) and Light
Cure LR (Reliance). Concise (3M) and diluted Concise were used as baseline. Irradiation
with Power Pac for 6 seconds provided polymerization of Transbond LR which could
be achieved in 10 sec with Optilux and in 20 sec with the conventional halogen. The
minimum curing times were 15 sec for Power Pac, 10 sec for Optilux and 40 sec for
conventional halogen when Light Cure LR was used. Final Vickers hardness value of
Transbond LR, Concise, diluted Concise and Light Cure LR were 62.8, 52.4, 46.0 and
40.4 respectively. When cured with different polymerization units, the difference
in final surface hardness values for each resin were not statistically significant.
However, different adhesives demonstrated significantly different surface hardness
values. Plasma arc curing or fast halogen units make it possible to polymerize resin
composite in much shorter times than conventional curing units, and the surface hardness
which is a polymerization characteristic associated with the units does not seem
to be lower with fast curing units. Therefore these units are suggested for clinical
use to save chair side time.
Schlüsselwörter
Lingualretainer - Oberflächenhärte von Kompositmaterialien
Key words
Lingual retainers - surface hardness values of adhesive resin material
Literatur
- 1
Little R M, Riedel R A, Artun J.
An evaluation of changes in mandibular anterior alignment from 10 to 20 years postretention.
Am J Orthod Dentofacial Orthop.
1988;
93 (5)
423-428
- 2
Nanda R S, Nanda S K.
Considerations of dentofacial growth in long-term retention and stability: is active
retention needed?.
Am J Orthod Dentofacial Orthop.
1992;
101 (4)
297-303
- 3
Angle E A.
Treatment of malocclusion of the teeth. 7th ed. Philadelphia: SS White Manufacturing
Co., 1907. In: Blake M, Bibby K. Retention and stability: a review of the literature.
Am J Orthod Dentofacial Orthop.
1998;
114 (3)
299-306
- 4
Hawley C A.
A removable retainer. Int. J. Orthod. 1919; 2: 291-298. In: Bearn DR. Bonded orthodontic
retainers: a review.
Am J Orthod Dentofacial Orthop.
1995;
108 (2)
207-213
- 5
Knierim R W.
Invisible lower cuspid to cuspid retainer.
Angle Orthod.
1973;
43 (2)
218-220
- 6
Rubenstein B M.
A direct bond maxillary retainer.
J Clin Orthod.
1976;
10 (1)
43
- 7
Carter R N.
Simplified direct-bonded retainer.
J Clin Orthod.
1978;
12 (3)
221
- 8
Lubit E C.
The bonded lingual retainer.
J Clin Orthod.
1979;
13 (5)
311-313
- 9
Lee R T.
The lower incisor bonded retainer in clinical practice: a three year study.
Br J Orthod.
1981;
8 (1)
15-18
- 10
Zachrisson B U.
Clinical experience with direct-bonded orthodontic retainers.
Am J Orthod.
1977;
71 (4)
440-448
- 11
Artun J, Zachrisson B U.
Improving the handling properties of a composite resin for direct bonding.
Am J Orthod.
1982;
81 (4)
269-276
- 12
Zachrisson B U.
The bonded lingual retainer and multiple spacing of anterior teeth.
Swed Dent J Suppl.
1982;
15
247-255
- 13
Artun J, Spadafora A T, Shapiro P A, McNeill R W, Chapko M K.
Hygiene status associated with different types of bonded, orthodontic canine-to-
canine retainers.
J Clin Periodontol.
1987;
14 (2)
89-94
- 14
Zachrisson B U.
Third-generation mandibular bonded lingual 3 -3 retainer.
J Clin Orthod.
1995;
29 (1)
39-48
- 15
Oesterle L J, Newman S M, Shellhart W C.
Rapid curing of bonding composite with a xenon plasma arc light.
Am J Orthod Dentofacial Orthop.
2001;
119 (6)
610-616
- 16
Bearn D R.
Bonded orthodontic retainers: a review.
Am J Orthod Dentofacial Orthop.
1995;
108 (2)
207-213
- 17
Asmussen E.
Restorative resins: hardness and strength vs. quantity of remaining double bonds.
Scand J Dent Res.
1982;
90 (6)
484-489
- 18
Ferracane J L.
Correlation between hardness and degree of conversion during the setting reaction
of unfilled dental restorative resins.
Dent Mater.
1985;
1 (1)
11-14
- 19
Rueggeberg F A, Craig R G.
Correlation of parameters used to estimate monomer conversion in a light-cured composite.
J Dent Res.
1988;
67 (6)
932-937
- 20
Ferracane J L, Mitchem J C, Condon J R, Todd R.
Wear and marginal breakdown of composites with various degrees of cure.
J Dent Res.
1997;
76 (8)
1508-1516
- 21
Pearson G J, Longman C M.
Water sorption and solubility of resin-based materials following inadequate polymerization
by a visible-light curing system.
J Oral Rehabil.
1989;
16 (1)
57-61
- 22
Caughman W F, Caughman G B, Shiflett R A, Rueggeberg F, Schuster G S.
Correlation of cytotoxicity, filler loading and curing time of dental composites.
Biomaterials.
1991;
12 (8)
737-740
- 23
McCabe J F, Carrick T E.
Output from visible-light activation units and depth of cure of light-activated composites.
J Dent Res.
1989;
68 (11)
1534-1539
- 24
Taira M, Urabe H, Hirose T, Wakasa K, Yamaki M.
Analysis of photo-initiators in visible-light-cured dental composite resins.
J Dent Res.
1988;
67 (1)
24-28
- 25
Hofmann N, Hugo B, Schubert K, Klaiber B.
Comparison between a plasma arc light source and conventional halogen curing units
regarding flexural strength, modulus, and hardness of photoactivated resin composites.
Clin Oral Investig.
2000;
4 (3)
140-147
- 26
Vargas M A, Cobb D S, Schmit J L.
Polymerization of composite resins: argon laser vs. conventional light.
Oper Dent.
1998;
23 (2)
87-93
- 27
Cobb D S, Vargas M A, Rundle T.
Physical properties of composites cured with conventional light or argon laser.
Am J Dent.
1996;
9 (5)
199-202
- 28
Meniga A, Tarle Z, Ristic M, Sutalo J, Pichler G.
Pulsed blue laser curing of hybrid composite resins.
Biomaterials.
1997;
18 (20)
1349-1354
- 29
Tarle Z, Meniga A, Ristic M, Sutalo J, Pichler G.
Polymerization of composites using pulsed laser.
Eur J Oral Sci.
1995;
103 (6)
394-398
- 30
Blankenau R J, Kelsey W P, Powell G L, Shearer G O, Barkmeier W W, Cavel W T.
Degree of composite resin polymerization with visible light and argon laser.
Am J Dent.
1991;
4 (1)
40-42
- 31
Hinoura K.
Akiyama Y, Miyazaki M, Kuroda T, Onose H. Influence of irradiation sequence on dentin
bond of resin inlays.
Oper Dent.
1995;
20 (1)
30-33
- 32
Kurchak M.
DeSantos B, Powers J, Turner D. Argon laser for light-curing adhesives.
J Clin Orthod.
1997;
31 (6)
371-374
- 33
Powell G L, Blankenau R J.
Effects of argon laser curing on dentin shear bond strengths.
J Clin Laser Med Surg.
1996;
14 (3)
111-113
- 34
Shanthala B M, Munshi A K.
Laser vs. visible-light cured composite resin: an in vitro shear bond study.
J Clin Pediatr Dent.
1995;
19 (2)
121-125
- 35
Weinberger S J, Foley T F, McConnell R J, Wright G Z.
Bond strengths of two ceramic brackets using argon laser, light, and chemically cured
resin systems.
J Clin Laser Med Surg.
1997;
67 (3)
173-178
- 36
Powell G L, Anderson J R, Blankenau R J.
Laser and curing light induced in vitro pulpal temperature changes.
J Clin Laser Med Surg.
1999;
17 (1)
3-5
- 37
Hannig M, Bott B.
In-vitro pulp chamber temperature rise during composite resin polymerization with
various light-curing sources.
Dent Mater.
1999;
15 (4)
275-281
- 38
CRA Newsletter.
2000;
24 (5)
2
- 39
Zach L, Cohen G.
Pulp response to externally applied heat.
Oral Surg Oral Med Oral Pathol.
1965;
19
515-530
- 40
Pohto M, Scheinin A.
Microscopic observations on living dental pulp.
Acta Odontol Scand.
1958;
16
303-327
- 41
Miyazaki M, Hattori T, Ichiishi Y, Kondo M, Onose H, Moore B K.
Evaluation of curing units used in private dental offices.
Oper Dent.
1998;
23 (2)
50-54
- 42
Leinfelder K F.
Ask the expert. What intensity is best in light curing?.
J Am Dent Assoc.
1999;
130 (4)
534
- 43
Berthold M.
Plasma arch lights, argon lasers: how they work.
Am Dent Assoc News.
2000;
31
29-30
- 44
DeWald J P.
Ferracane JL. A comparison of four modes of evaluating depth of cure of light-activated
composites.
J Dent Res.
1987;
66 (3)
727-730
- 45
Ferracane J L, Greener E H.
The effect of resin formulation on the degree of conversion and mechanical properties
of dental restorative resins.
J Biomed Mater Res.
1986;
20 (1)
121-131
- 46
Dahl E H, Zachrisson B U.
Long-term experience with direct-bonded lingual retainer.
J Clin Orthod.
1991;
25 (10)
619-632
- 47
Bearn D R, McCabe J F, Gordon P H, Aird J C.
Bonded orthodontic retainers: the wire-composite interface.
Am J Orthod Dentofacial Orthop.
1997;
111 (1)
67-74
- 48
Draughn R A, Harrison A.
Relationship between abrasive wear and microstructure of composite resins.
J Prosthet Dent.
1978;
40 (2)
220-224
- 49
Pilo R, Cardash H S.
Post-irradiation polymerization of different anterior and posterior visible light-activated
resin composites.
Dent Mater.
1992;
8 (5)
299-304
Dr. Tamer Büyükyilmaz
Gazipasa Bulvarı 43/B
01120 Adana, Turkey
Telefon: +90/5 32-4 66 10 55
Fax: +90/3 22-4 53 79 57
eMail: tbuyukyilmaz@superonline.com