Zusammenfassung
Die Radikalität der Exstirpation von Hirntumoren wird durch das Risiko postoperativer neurologischer Ausfälle eingeschränkt. Aus diesem Grund ist die Anwendung intraoperativer neurophysiologischer Untersuchungsmethoden bei Operationen im Bereich motorischer Funktionsareale unerlässlich. Diese Methoden basieren auf der elektrischen Erregbarkeit der menschlichen Hirnrinde. Die bis dato als Routineuntersuchung verwandte direkte bipolare Kortexstimulation ist jedoch durch die Gefahr epileptischer Anfälle, intraoperativer Massenbewegungen sowie durch eine lange Untersuchungsdauer eingeschränkt. In der vorliegenden Studie wurde bei 184 zerebralen Eingriffen in motorisch eloquenten Arealen untersucht, ob die erst von wenigen Autoren beschriebene monopolare Kortexstimulation (MKS) sowohl eine zuverlässige intraoperative Lokalisation (Mapping) als auch eine kontinuierliche Überwachung (Monitoring) motorischer Funktionszentren ermöglicht. Die hierfür benötigten Stimulations- und Ableitparameter sowie Zusammenhänge zwischen operativen Manövern, intraoperativen Potenzialveränderungen und der postoperativen klinischen Symptomatik sollten untersucht werden. Die Ortung motorischer Rindenareale (MKS-Mapping) war in 91,8 % der Fälle möglich. Die Ableitung von Muskelaktionspotenzialen (CMAPs) erfolgte, gemäß dem großen Repräsentationsareal von Hand und Unterarm in der primären motorischen Hirnrinde, hauptsächlich über die Thenarmuskulatur und die Unterarmflexoren. Die am häufigsten erfolgreich eingesetzten Stimulationsparameter waren eine Stimulationsfrequenz von 400 Hz mit einer Impulssequenz von fünf Impulsen und einer Impulsdauer von 0,3 ms. Die hierunter benötigten Stimulationsstärke lag im Durchschnitt bei 15,3 ± 8,2 mA. Die im Verlauf der intraoperativen Funktionsüberwachung (MKS-Monitoring) untersuchten Parameter Latenz, Potenzialbreite und Amplitude hatten eine große individuelle Variationsbreite; so konnten Latenzschwankungen von bis zu 5 % ohne pathologisches Korrelat beobachtet werden. Es zeigte sich jedoch, dass eine spontane Verlängerung der Latenz um mehr als 15 % sowie eine abrupte Reduktion der Amplitude um mehr als 80 % als intraoperatives Warnsignal angesehen werden können. Die MKS unterliegt, ebenso wie andere intraoperative neurophysiologische Untersuchungsmethoden, technischen, anatomischen und neurophysiologischen Einschränkungen. Ein „Mapping” und „Monitoring” motorischer Funktionsareale mithilfe der MKS scheint einem bipolaren Untersuchungsaufbau jedoch mehr als nur gleichwertig zu sein. So dienen Potenzialveränderungen nicht nur als intraoperatives Warnsignal, sie haben auch prognostische Aussagekraft. Komplikationen wie epileptische Anfälle oder intraoperativ störende Massenbewegungen sind während der MKS nicht aufgetreten.
Abstract
The extent of brain tumour resection is limited by the risk of postoperative neurological deficits. For this reason, intraoperative neurophysiological examination techniques are indispensable for surgery in motor function regions. These methods are based on the electric excitability of the human cerebral cortex. Direct bipolar cortex stimulation, which has been routinely applied so far, is however limited due to the risk of epileptic seizures and intraoperative mass movements as well as the long examination times. This study on 184 cerebral interventions in eloquent motor areas of the brain examined whether reliable intraoperative localisation and monitoring of motor function centres is possible with monopolar cortex stimulation (MCS) as recently described by some authors. The aim was to investigate stimulation and recording parameters, as well as to answer the question whether there is a connection between intraoperative potential alterations, surgical manipulation and postoperative clinical symptoms. MCS-mapping of the motor cortex was successful in 91.8 % of the cases. Compound muscle action potentials (CMAPs) were recorded primarily from the thenar and the forearm flexors in accordance with the large representational area of the hand and forearm in the primary motor cortex of the brain. The most common successfully used stimulation parameters were: frequency 400 Hz; impulse sequence of 5 impulses; impulse duration 0.3 ms. The stimulation intensity was 15.3 ± 8.2 mA. Since the parameters examined during MCS-Monitoring (latency, potential width and amplitude) had such a wide variation range, individual latency fluctuations of up to 5 % were observed without a pathological correlate. However, it was found that a spontaneous prolongation of latency of more than 15 % and an abrupt amplitude reduction of more than 80 % should be considered as an intraoperative warning signal. Monopolar cortex stimulation is subject to technical, anatomical and neurophysiological restrictions just as other intraoperative neurophysiological examination methods. Nevertheless, mapping and monitoring motor function regions using monopolar cortex stimulation seem to be more than just equivalent to a bipolar study design. Potential alterations not only serve as an intraoperative warning signal but also have prognostic value. Complications like epileptic seizures or intraoperatively disturbing mass movements did not occur during monopolar cortex stimulation.
Key words
Intraoperative mapping - intraoperative monitoring - direct cortex stimulation - monopolar cortex stimulation
Literatur
1
Fritsch G, Hitzig E.
Über die elektrische Erregbarkeit des Grosshirns.
Arch Anat Physiol Wiss Med.
1870;
37
300-332
2
Horsley V, Schäfer E A.
Experimental researches in cerebral physiology: I. On the functions of the marginal convolution.
Proc R Soc Lond B Biol Sci.
1883 - 84;
36
437-442
3
Horsley V, Schäfer E A.
I. A record of experiments upon the functions of the cerebral cortex.
Philos Trans R Soc Lond Biol.
1888;
179
1-45
4
Horsley V.
Remarks on ten consecutive cases of operations upon the brain and cranial cavity to illustrate the details and safety of method employed.
Br J Med.
1887;
1
863
5
Horsley V.
The Croonian Lecture: On the mammalian nervous system, its functions and their localization, determined by an electrical method.
Philos Trans R Soc Lond B Biol.
1891;
182
267-326
6
Gruenbaum A SF, Sherrington C.
Observations on physiology of the cerebral cortex of some of the higher apes.
Proc R Soc Lond B Biol Sci.
1903;
72
152-209
7
Cushing H.
A note upon the faradic stimulation of central gyrus in conscious patients.
Brain.
1909;
32
42-53
8
Penfield W, Boldrey E.
Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation.
Brain.
1937;
60
389-443
9
Le Roux P, Berger M, Haglund M M, Pilchner W H, Ojeman G A.
Resection of intrinsic tumors from nondominant face motor cortex using stimulation mapping: report of two cases.
Surg Neurol.
1991;
36 (1)
44-48
10
Berger M S, Kincaid J, Ojemann G A, Lettich B A.
Brain mapping techniques to maximize resection, safety and seizure control in children with brain tumors.
Neurosurgery.
1989;
25
786-792
11
Taniguchi M, Cedzich C, Schramm J.
Modification of cortical stimulation for motor evoked potentials under general anesthesia: Technical description.
Neurosurgery.
1993;
32
219-226
12
Cedzich C, Taniguchi M, Schäfer S, Schramm J.
Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region.
Neurosurgery.
1996;
38
962-970
13 Nuwer M R. Localization of motor cortex with median nerve somatosensory evoked potentials. In: Schramm J, Møller A (eds) Intraoperative Neurophysiological Monitoring in Neurosurgery. Berlin; Springer-Verlag 1991: 35-41
14
Weir B, Grace M.
The relative significance of factors affecting postoperative survival in astrocytomas, grades one and two.
Can J Neurol Sci.
1976;
3
47-50
15
Weir B.
The relative significance of factors affecting postoperative survival in astrocytomas, grades 3 and 4.
J Neurosurg.
1973;
38
448-452
16
Hirakawa K, Suzuki K, Ueda S, Nakawa Y, Yoshino E, Ibayashi N.
Multivariate analysis of factors affecting postoperative survival in malignant astrocytomas.
J Neurooncol.
1984;
12
331-340
17
Ammirati M, Vick N, Liao Y, Ciric I, Mikhael M.
Effect of the extent of surgical resection on survival and quality of life in patients with supratentorial glioblastomas and anaplastic astrocytomas.
Neurosurgery.
1987;
21
201-206
18
Ciric I, Ammirati M, Vick N, Mikhael M.
Supratentorial gliomas: surgical considerations and immediate postoperative results. Gross total resection versus partial resection.
Neurosurgery.
1987;
21
21-26
19
Ojemann J G, Miller J W, Silbergeld D L.
Preserved function in brain invaded by tumor.
Neurosurgery.
1996;
39
253-258
20
Skirboll S S, Ojemann G A, Berger M S, Lettich E, Winn H R.
Functional cortex and subcortical white matter located within gliomas.
Neurosurgery.
1996;
38
678-684
21
Ebeling U, Schmid U, Reulen H J.
Tumour surgery within the central motor strip: surgical results with aid of electrical motor cortex stimulation.
Acta Neurochir (Wien).
1990;
101
101-107
22
Ebeling U, Schmid U D, Ying H, Reulen H J.
Safe surgery of lesions near the motor cortex using intra-operative mapping techniques: A report on 50 patients.
Acta Neurochir (Wien).
1992;
119
23-28
23
Wunderlich G, Knorr U, Herzog H, Kiwit J CW, Freund H J, Seitz R.
Precentral glioma location determines the displacement of cortical hand representation.
Neurosurgery.
1998;
42
18-27
24
Atlas S W, Howard R S, Maldjian J, Alsop D, Detre J A, Listerud J, D'Esposito M, Judy K D, Zager E, Stecker M.
Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: Findings and implications for clinical managements.
Neurosurgery.
1996;
38
329-338
25
Mueller W M, Yetkin F Z, Hammeke T A, Morris G L, Swanson S J, Reichert K, Cox R, Haughton V M.
Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors.
Neurosurgery.
1996;
39
515-520
26
Yousry T A, Schmid U D, Schmidt D, Hagen T, Jassoy A G, Reiser M F.
The central sulcal vein: A landmark for identification of the central sulcus using functional magnetic imaging.
J Neurosurg.
1996;
85
608-617
27
Sabatini U, Pantano P, Brughitta G, Celli P, Ricci M, Lenzi G, Bozzao L.
Presurgical integrated MRI/SPECT localization of the sensorimotor cortex in a patient with a low-grade astrocytoma in the rolandic area.
Neuroreport.
1995;
29
105-108
28
Goldring S, Gregorie E M.
Surgical management of epilepsy using edidural recordings to localize the seizure focus.
J Neurosurg.
1984;
60
457-466
29
Goldring S.
A method for surgical management of focal epilepsy, especially as it relates to children.
J Neurosurg.
1978;
49
344-356
30
Aiba T, Seki Y.
Intraoperative identification of the central sulcus: a practical method.
Acta Neurochir Suppl (Wien).
1988;
42
22-26
31
Allison T, McCarthy G, Wood C C, Darcey T M, Spencer D D, Williamson P D.
Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity.
J Neurophysiol.
1989;
62
694-710
32
Allison T.
Localization of sensorimotor cortex in neurosurgery by recording of somatosensory evoked potentials.
Yale J Biol Med.
1987;
60
143-150
33
Cracco R Q, Bickford R G.
Somatomotor and somatosensory evoked responses. Median nerve stimulation in man.
Arch Neurol.
1968;
18
52-68
34
Desmedt J E, Chéron G.
Somatosensory evoked potentials in man: subcortical and cortical components and their neural basis.
Ann NY Acad Sci.
1982;
388
388-411
35
Lüders H, Lesser R P, Hahn J.
Cortical somatosensory evoked potentials in response to hand stimulation.
J Neurosurg.
1983;
58
885-894
36
Wood C, Spencer D, Allison T, McCarthy G, Williamson P, Goff W.
Localisation of human sensorimotor cortex during surgery by cortical surface recording of somatosensory evoked potentials.
J Neurosurg.
1988;
68
99-111
37
Woolsey C N, Erickson T C.
Study of the postcentral gyrus of man by the evoked potential technique.
Trans Am Neurol Assoc.
1950;
75
50-52
38
King R B, Schell G R.
Cortical localization and monitoring during cerebral operations.
J Neurosurg.
1987;
67
210-219
39
Hern E C, Landgren S, Philips C G, Porter R.
Selective excitation of corticofugal neurones by surface-anodal stimulation of the baboon's motor cortex.
J Physiol.
1962;
161
73-90
40
Rank J B.
Which elements are excited in electrical stimulation of mammalian central nervous system: a review.
Brain Res.
1975;
98
417-440
41
Landgren S, Phillips C G, Porter R.
Minimal synaptic actions of pyramidal impulses on some alpha-motoneurons of the baboon's hand and forearm.
J Physiol (Lond).
1962;
161
91-111
42
Berger M S, Cohen W A, Ojemann G A.
Correlation of motor cortex brain mapping data with magnetic resonance imaging.
J Neurosurg.
1990;
72
383-387
43
Kombos T, Suess O, Funk T, Kern B C, Brock M.
Intra-operative mapping of the motor cortex during surgery in and around the motor cortex.
Acta Neurochir (Wien).
2000;
142
263-268
44
Kombos T, Suess O, Brock M.
Intraoperative functional mapping of the motor cortex: A review.
Neurosurgery Quarterly.
2000;
10 (4)
311-315
45
Kombos T, Süss O, Ciklatekerlio Ö, Brock M.
Monitoring of intraoperative motor evoked potentials to increase the safety of surgery in and around the motor cortex.
J Neurosurg.
2001;
95
608-614
46
Cedzich C, Pechstein U, Schramm J, Schäfer S.
Electrophysiological considerations regarding electrical stimulation of motor cortex and brain stem in humans.
Neurosurgery.
1998;
42
527-532
47
Agnew W, McCreery D.
Considerations for safety in the use of electrical stimulation for motor evoked potentials.
Neurosurgery.
1987;
20
143-147
48
Day B L, Rothwell J C, Thompson P D, Dick J PR, Cowan J MA, Barardelli A, Marsden C D.
Motor cortex stimulation in intact man. 2. Multiple descending volleys.
Brain.
1987;
110
1191-1209
49
Milner-Brown S H, Girvin J, Brown W.
The effect of motor cortical stimulation on the excitability of spinal motoneuron in man.
Can J Neurol Sci.
1975;
244
245-253
50
Penfield W.
Ferrier lecture: some observations on cerebral cortex of man.
Proc Roy Soc Lond B Biol.
1947;
134
329-347
51
Yousry T A, Schmid U D, Jassoy A G.
Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery.
Radiology.
1995;
195
23-29
52
Angel A, LeBeau F.
A comparison of the effects of propofol with other anesthetic agents on the centripetal transmission of sensory information.
Gen Pharmacol.
1992;
23
945
53
Calancie B, Klose J, Baier S, Green B A.
Isoflurane-induced attenuation of motor evoked potentials caused by electrical motor cortex stimulation during surgery.
J Neurosurg.
1991;
74
897-904
54
Sloan T B, Koht A.
Depression of cortical somatosensory evoked potentials by nitrous oxide.
Br J Anesth.
1985;
57
849-852
55
Koht A, Schutz W, Schmidt G, Schramm J, Watanabe E.
Effects of etomidat, midazolam and thiopental on median nerve somatosensory evoked potentials and die additive effects of fentanyl and nitrous oxide.
Anesth Analg.
1988;
67
435
56
Zentner J, Kiss I, Ebner A.
Influence of anesthetics - nitrous oxide in particular - on electromyographic response evoked by transcranial electrical stimulation of the cortex.
Neurosurgery.
1989;
24
253-256
57
Sloan T B, Fugina M L, Toleikis J R.
Effects of midazolam on median nerve somatosensory evoked potentials.
Br J Anaesth.
1990;
64
590
58
Russ W, Thiel A, Schwandt H J, Hempelmann G.
Somatosensorisch evozierte Potentiale unter Thiopental und Etomidate.
Anaesthesist.
1986;
35
679
59
Scheufler K M, Zentner J.
Total intravenous anesthesia for intraoperative monitoring of the motor pathways: an integral view combining clinical and experimental data.
J Neurosurg.
2002;
96
571-579
60
Abou-Madi M, Trop D, Lenis S, Olivier A, Leblanc R.
Selective neuromuscular blockade for intraoperative electrocorticography.
Appl Neurophysiol.
1987;
50
386-389
Dr. med. Olaf Süss
Neurochirurgische Klinik · Universitätsklinikum Benjamin Franklin · Freie Universität Berlin
Hindenburgdamm 30
12200 Berlin
Email: olaf.suess@medizin.fu-berlin.de