Fortschr Neurol Psychiatr 2003; 71(9): 449-457
DOI: 10.1055/s-2003-42189
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Der interhemispherielle Transfer und seine Relevanz in der Neurologie und Psychiatrie

Interhemispheric Transfer and its Implications for Neurology and PsychiatryS. von  Richthofen1 , S.  Tabrizian1 , H.  J.  Grabe2 , B.-U.  Meyer3
  • 1Klinik für Psychiatrie und Psychotherapie des Universitätsklinikums Eppendorf, Hamburg
  • 2Klinik für Psychiatrie und Psychotherapie der Ernst-Moritz-Arndt-Universität, Greifswald
  • 3Klinik für Neurologie der Charité, Humboldt-Universität, Berlin
Further Information

Publication History

Publication Date:
16 September 2003 (online)

Zusammenfassung

Das Corpus callosum (CC) ist die wichtigste Verbindung zwischen beiden Großhirnhälften. Der Informationstransfer zwischen beiden Gehirnhälften ist wegen der Lateralisierung bestimmter Hirnfunktionen zur Generierung eines optimalen psychomotorischen Funktionszustandes von Bedeutung. Dysfunktionen des CC können zu neuropsychologischen Defiziten führen und möglicherweise zu psychiatrischen Erkrankungen beitragen. Dargestellt werden die normale sowie die gestörte Entwicklung des CC, die makroskopische und mikroskopische Anatomie sowie die z. T. erheblichen Folgen einer operativen Durchtrennung des CC für visuelle, somatosensorische und auditorische Funktionssysteme. Zur Untersuchung der physiologischen Kooperation beider Hemisphären werden zwei elelektrophysiologische Testmethoden der kallosalen Informationsübertragung vorgestellt: Der interhemisphärische Transfer bei schnellen visuo-motorischen Aufgaben (CUD) und die transkallosale Inhibition (TI). Eine erste Studie an unmedizierten, schizophrenen Patienten zeigte eine verminderte mittlere TI. Dies könnte für eine verminderte transkallosale Inhibition der Motorkortizes bei der Schizophrenie sprechen. Zusätzlich werden weitere Ergebnisse vorgestellt und diskutiert, die das CC und die Transferfunktionen schizophrener Patienten untersucht haben. In weiterführenden Untersuchungen sollte die mögliche Rolle des transkallosalen Informationstransfers für distinkte Symptomkonstellationen und neuropsychologische Defizite schizophrener Patienten untersucht werden.

Abstract

The corpus callosum (CC) is the brain's most important connection between cortical areas of both hemispheres. Due to the hemispheric lateralisation of brain function, information transfer between both hemispheres is vital for an optimal performance in tasks, in which several psycho-motor functions have to be integrated. Dysfunction of the CC can lead to deficits in neuropsychological tasks and could contribute to pathologies underlying psychiatric illnesses. In this review the normal and abnormal development of the CC as well as its macro- and microscopic anatomy will be outlined. Then the detrimental effects of operative callosomy on different modalities, e. g. on vision, the somatosensory and the auditory system, will be discussed. Two electrophysiological methods will be introduced, with which interhemispheric communication can be studied: hemispheric transfer in rapid visuo-motoric tasks (CUD) and transcallosal inhibition (TI), a phenomenon which occurs in a special paradigm of transcranial magnetic stimulation. A first study found TI to be reduced in unmedicated schizophrenic patients. This suggests that an inhibition between motor cortices could be reduced in schizophrenic patients. Further results of other studies, which have analysed the CC and interhemispheric transfer in schizophrenic patients, will be introduced and discussed. In future experiments, the contribution of dysfunctions of transcallosal transfer to psychopathological symptoms and neuropsychological deficits in schizophrenia should be studied.

Literatur

  • 1 Pandya D N, Selzer B. The topography of commissural fibres. In: Lepore F, Ptito M, Jasper, HH. Two hemispheres-one brain. Functions of the corpus callosum. New York: Liss 1986: 47-73
  • 2 Lomber S, Payne B, Rosenquist A. The spatial relationship between the cerebral cortex and fibre trajectory through the corpus callosum of the cat.  Behavioural Brain Research. 1994;  64 25-35
  • 3 Jones E G, Coulter J D, Wise S P. Commissural columns in the sensory-motor cortex of monkies.  J Comp Neurology. 1979;  181 291-347
  • 4 Kolb B, Whishaw I Q. Neuropsychologie. 2. Aufl., Kap. 15. Berlin: Spektrum Akademischer Verlag 1996
  • 5 Conti F, Manzoni T. The neurotransmitters and postsynaptic actions of callosally projecting neurons.  Behavioural Brain Research. 1994;  64 37-53
  • 6 Aboitiz F, Scheibel A, Fisher R, Zaibel R. Individual differences in brain asymmetries and fibres connections in the human corpus callosum.  Brain Research. 1992;  598 154-161
  • 7 Innocenti G. Some new trends in the study of the corpus callosum.  Behavioural Brain Research. 1994;  64 1-8
  • 8 Brodmann K. Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt aufgrund des Zellenbaums. Leipzig: Barth 1909
  • 9 Cock N. The brain code: mechanisms of information transfer and there role of the corpus callosum. London: Methuen 1986
  • 10 De Lacoste M, Kirkpatrick J, Ross E. Topography of te human corpus callosum.  J Neuropathology Exp Neurology. 1985;  44 578-591
  • 11 Kawamura T, Nishio S, Morioka T, Fukui K. Callosal anomalities in patients with spinal dysraphism: Correlation of clinical and neuroimaging features with hemispheric abnormalities.  Neurological research. 2002;  24 463-466
  • 12 Keshavan M, Diwadkar V A, DeBellis M, Dick E, Kotwal R, Rosenberg D, Sweeney J, Minshew N, Pettegrew J. Development of the corpus callosum in childhood adolescence and early adulthood.  Life Science. 2002;  70 1909-1922
  • 13 Pujol J, Vendrell P, Junqué C, Vilalta J, Capdevilla A. When does the human brain development end? Evidence if the corpus callosum growth up to adulthood.  Annals of Neurology. 1993;  34 71-75
  • 14 Lassonde M, Sauerwein H, Geoffroy G, Decarie M. Effects of early and late transsection of the corpus callosum.  Brain. 1986;  109 953-967
  • 15 Meyer B U, Röricht S, Niehaus L. Morphology of acallosal brains as assessed by MRI in six patients leading a normal daily life.  J of Neurology. 1998;  245 106-110
  • 16 Rosenthal-Wisskirchen E. Pathologisch-anatomische und klinische Beobachtung beim Balkenmangel mit besonderer Berücksichtigung der Balkenlängsbündel.  Deutsche Zeitschrift für Nervenheilkunde. 1967;  192 1-45
  • 17 Jeeves M A. Callosal Agenesis: Neuronal and developmental adaptations. Two hemispheres-one brain, functions of the corpus callosum. Alan R. Liss: Inc 1986: 403-421
  • 18 Sauerwein H, Lassonde M. Cognitive and sensori-motor functioning in the absence of the corpus callosum: neurophysiological studies in callosal agenesis and callotomized patients.  Behavioural Brain Research. 1994;  64 229-240
  • 19 Dennis M. Impaired sensory and motor differentiation with corpus callosum agenesis: a lack of callosal inhibition during ontogeny.  Neuropsychologica. 1976;  14 455-469
  • 20 Sauerwein H, Lassonde M, Cardu B, Goeffrey G. Interhemispheric integration of sensory and motor functions in the agenesis of the corpus callosum.  Neuropsychologica. 1981;  19 445-454
  • 21 Sperry R, Gazzaniga M, Bogen J E. Interhemispheric relationships: the neocortical commissures, syndromes of hemispheric disconnection. In: Handbook of clinical neurology. Edited by Vinken PJ and Bruyn GW. Amsterdam: North-Holland 1965 4: 273-290
  • 22 Geffen G, Nilson J, Quinn K. The effect of lesions of the corpus callosum on finger localisation.  Neuropsychologica. 1984;  23, No 4 497-514
  • 23 Sperry R. Consciousness, personal identity, and the divided brain. Two hemispheres-one brain. Functions of the corpus callosum. By Alan Riss, Inc. published 1986: pages 3-20
  • 24 Gazzaniga M. Cerebral specialization and interhemispheric communication. Does the corpus callosum enable the human condition?.  Brain. 2000;  123 1293-1326
  • 25 Funnell M G, Corballis P M, Gazzaniga M S. Insights into functional specificity of the human corpus callosum.  Brain. 2000;  123 920-926
  • 26 Siditis J J, Volpe B, Holtzmann J, Wilson D, Gazzaniga M. Cognitive interaction after staged callosal section: evidence for transfer of semantic activation.  Science. 1981;  212 344-346
  • 27 Ihori N, Kawamura M, Fukuzawa K, Kamaki M. Somethesic disconnection syndromes in patients with callosal lesions.  European Neurology. 2000;  44, 2 65-70
  • 28 Benin S, Sahar A, Moscovitch M. Intermanual information transfer in patients with lesions in the trunk of the corpus callosum.  Neuropsychologica. 1984;  22, 5 601-611
  • 29 Fabri M, Polonara G, Del Pesce M, Quattrini A, Salvolini U, Manzoni T. Role of the corpus callosum in the somatosensory activation of the ipsilateral cerebral cortex: an fMRI study of callosotomized patients.  European J of Neuroscience. 1999;  11 3983-3994
  • 30 Musiek F E, Wilson D H, Pinheiro M L. Audiological manifestations in „split brain” patients.  J Am Aud Soc. 1979;  5, 1 25-29
  • 31 Risse G, Gates J, Lund G, Maxwell R, Rubens A. Interhemispheric transfer in patients with incomplete section of the corpus callosum.  Archives of Neurology. 1989;  46 437-443
  • 32 Hellige J B. Hemispheric asymmetry: what's left and what's right. Cambrigde: MA, Harvard University Press, XIII 1993: 396p
  • 33 Duus P. Neurologisch-topische Diagnostik. Anatomie, Physiologie, Klinik. 5. Auflage. Georg Thieme Verlag 1990
  • 34 Eliassen J C, Baynes K, Gazzaniga M S. Direction information coordinated via the posterior third of the corpus callosum during bimanual movements.  Exp Brain Res. 1999;  128 573-577
  • 35 Frantz E, Ivry R, Gazzaniga M. Dissociation of spatial and temporal coupling in the bimanual movements of callosotomy patients.  Psychol sci. 1996;  7 306-310
  • 36 Gazzaniga M S. The bisected brain. New York: Appleton-Century Crofts 1970
  • 37 Zaibel E, Peters A. Phonological encoding and ideographic reading by the disconnected hemisphere: two case studies.  Brain Lang. 1981;  14 205-234
  • 38 Gazzaniga M S. Organisation of the human brain.  Science. 1989;  245 947-952
  • 39 Gazzaniga M S, Smylie C S. Facial recognition and brain asymmetries: clues to underlying mechanisms.  Ann Neurology. 1983;  13 536-540
  • 40 Borod J, Haywood C, Koff E. Neuropsychological aspects of facial asymmetry during emotional expression: a review of the normal adult literature.  Neuropsychological Review. 1997;  7 41-60
  • 41 Gazzaniga M S, Smylie C S. Hemisphere mechanisms controlling voluntary and spontaneus facial expressions.  J cog Neuroscience. 1990;  2 239-245
  • 42 Poffenberger A T. Reaction time to retinal stimulation with special reference to the time lost in conduction through nerve centres.  Archives of Psychology. 1912;  23 1-73
  • 43 Aglioti S, Berlucchi G, Pallini R, Rossi G, Tassinari G. Hemispheric control of unilateral and bilateral responses to lateralized light stimuli after callosotomy and callosal agenesis.  Exp Brain Res. 1993;  95 151-165
  • 44 Tassinari G, Aglioti S, Pallini R, Berlucchi G, Rossi G. Interhemispheric integration of simple visuomotor responses in patients with partial callosal defects.  Behavioural Brain Research. 1994;  64 141-149
  • 45 Ferbert A, Priori A, Rothwell J, Day B, Colebatch J, Marsden C. Interhemispheric inhibition of the human motor cortex.  J of Physiology. 1992;  453 525-546
  • 46 Meyer B U, Röricht S, Einsiedel G, Krügel F, Weindl A. Inhibitory and excitatory interhemispheric transfer between motor cortical areas in normal subjects and patients with abnormalities of the corpus callosum.  Brain. 1995;  118 429-440
  • 47 Meyer B U, Röricht S, Woiciechowsky C. Topography of fibres in the human corpus callosum mediating interhemispheric inhibition between motor cortices.  Ann Neurology. 1998;  43 360-369
  • 48 Boroojerdi B, Diefenbach K, Ferbert A. Transcallosal inhibition in cortical and subcortical cerebral vascular lesions.  J of Neurological Sciences. 1996;  144 160-170
  • 49 Rothwell J, Colebatch J, Britton T. et al . Physiological studies in an patient with mirror movements and agenesis of the corpus callosum.  J Physiol (London). 1991;  7 438-534
  • 50 Heinen F, Glocker F, Fietzek U, Meyer B U, Lucking C H, Korinthenberg R. Absence of transcallosal inhibition following focal magnetic stimulation in preschool children ipsilateral muscles.  Ann Neurol. 1998;  43,5 608-612
  • 51 Röricht S, Meyer B-U, Woichiechowsky C, Lehmann R. Callosal and corticospinal tract function in patients with hydrocephalus: a morphometric and transcranial magnetic stimulation study.  J Neurol. 1998;  245 280-288
  • 52 Schmierer K, Niehaus L, Röricht S, Meyer B. Conduction deficit of callosal fibres in early multiple sclerosis.  J Neurol Neurosurg Psychiatry. 2000;  68 633-638
  • 53 David A. Schizophrenia and the corpus callosum: developmental, structural and functional relationships.  Behavioural Brain Research. 1994;  64 203-211
  • 54 Randall P L. Schizophrenia as a consequence of brain evolution.  Schizophrenia Research. 1998;  30 143-148
  • 55 Swayze V W, Andreasen N C, Ehrhard J, Yuh I M, Alliger R J, Cohen G A. Developmental abnormalities of the corpus callosum in schizophrenia.  Archives of Neurology. 1990;  47 805-808
  • 56 Nasrallah I A, Andreasen N, Coffmann J, Olson S C. A controlled magnetic resonance imaging study of the corpus callosum thickness in schizophrenia.  Biological Psychiatry. 1986;  21, 3 274-282
  • 57 Hoffmann R E, McGlashan T H. Parallel distributed processing and the emergence of schizophrenic symptoms.  Schizophrenia Bulletin. 1993;  19 119-140
  • 58 Hoffmann R, Boutros N, Berman R. et al . Transcranial magnetic stimulation of left temporoparietal cortex in three patients reporting hallucinating voices.  Bioliological Psychiatry. 1999;  46 130-132
  • 59 Rosenthal R, Bigelow L. Quantitative brain measurements in chronic schizophrenia.  Br J of Psychiatry. 1972;  121 259-264
  • 60 Woodruff P, McManus I, David A. Meta-analysis of corpus callosum size in schizophrenia.  Psychological Medicine. 1995;  23 457-461
  • 61 Demeter S, Ringo J, Doty R. Morphometric analysis of the human corpus callosum and anterior commissure.  Human Neurobiology. 1989;  6 219-226
  • 62 Keshavan M, Diwadkar V, Harenski K, Rosenberg D, Sweeney J, Pettegrew J. Abnormalities of the corpus callosum in first episode treatment naïve schizophrenia.  J Neurol Neurosurg Psychiatry. 2002;  72 757-760
  • 63 Pearlson G D. Superior temporal gyrus and planum temporale in schizophrenia. A selective review. Prog. Neuropsychopharmacol.  Biol Psychiatry. 1997;  21 1203-1229
  • 64 Fong J, Simms M R, Barker G. Neuropathological abnormalities in schizophrenia: evidence from magnetization transfer imaging.  Brain. 2001;  124 882-892
  • 65 Nasrallah H, Mc Calley-Whitters M, Bigelow L, Rauscher F. A histological study of the corpus callosum in chronic schizophrenia.  Psychiatry Research. 1983;  8 251-260
  • 66 Diamond S J, Scamwell R, Pryce I J, Huws D, Gray C. Some failures of intermanual and cross-lateral transfer in chronic schizophrenia.  J Abnormal Psychol. 1980;  89 505-509
  • 67 Walker E, Mc Guire M. Intra-and interhemispheric information processing in schizophrenia.  Psychological Bulletin. 1982;  92 701-725
  • 68 Raine A, Andrews H, Sheard C, Walder C, Manders D. Interhemispheric transfer in schizophrenics, depressives and normals with schizoid tendencies.  J Abnormal Psycholgy. 1989;  98, 1 35-41
  • 69 Phillips M, Woodruff P, David A. Stroop interference and fascilitation in the cerebral hemispheres in schizophrenia.  Schizophrenia Res. 1996;  20 57-68
  • 70 Mohr B, Pulvermüller F, Zaidel E, Raymen J. Interhemispheric cooperation during lexical processing is mediated by the corpus callosum: evidence from spit brain.  Neuroscience letters. 1994;  181 17-21
  • 71 Mohr B, Pulvermüller F, Zaidel E. Lexical decision after left, right, and bilateral presentation of content words, function words and non-words: evidence for interhemispheric interaction.  Neuropsychologica. 1994;  32 105-124
  • 72 Mohr B, Pulvermüller F, Cohen R, Rockstroh B. Interhemispheric cooperation during word processing: evidence for callosal transfer dysfunction in schizophrenic patients.  Schizophrenia Research. 2000;  46 231-239
  • 73 Höppner J, Kunesch E, Großmann A, Tolzin C, Schläfke D, Schulz M, Ernst K. Dysfunction of transcallosally mediated motor inhibition and callosal morphology in patients with schizophrenia.  Acta Psych Scand. 2001;  104 227-235
  • 74 Boroojerdi B, Töpper R, Foltys H, Meincke U. Transcranial inhibition and motor conduction studies in patients with schizophrenia using transcraniel magnetic stimulation.  British Journal of Psychiatry. 1999;  175 375-379
  • 75 Huda K, Salunga T, Matsunami K. Dopaminergic inhibition of excitatory inputs onto pyramidal tract neurons in cat motor cortex.  Neuroscience Letters. 2001;  20 175-178
  • 76 Ziemann U, Tergau F, Bruns D, Baudewig J, Paulus W. Changes in human motor cortex excitability induced by dopaminergic and anti-dopaminergic drugs.  Electroencephalogr Clin Neurophysiol. 1997;  105, No 6 430-437
  • 77 Zafiris J, Daskakakis M, Christensen B, Chen R, Fitzgerald P, Zipursky R, Kapur S. Evidence for impaired cortical inihibition in schizophrenia using transcranial magnetic stimulation.  Archives of General Psychiatry. 2002;  59, No 4 1-13
  • 78 Benes F M. Modelgeneration and testing to probe neural circuity in the cingulate cortex of postmortem schizophrenic brain.  Schizophrenia Bull. 1998;  24 219-230
  • 79 Berlucci G. Comissurotomy studies in animals. In: Boller F, Grafmann J, eds. Handbook of neuropsychology. Amsterdam, the Netherlands: Elsevier 1990 4: 9-47

Dr. med. Hans Joergen Grabe

Klinik für Psychiatrie und Psychotherapie der Ernst-Moritz-Arndt-Universität, Greifswald, · Klinikum der Hansestadt Stralsund

Rostocker Chaussee 70

18437 Stralsund

Email: grabeh@uni-greifswald.de

    >