References
<A NAME="RD17803ST-1A">1a</A>
Li C.-J.
Chem. Rev.
1993,
93:
2023
<A NAME="RD17803ST-1B">1b</A>
Chan TH.
Li C.-J.
Can. J. Chem.
1994,
72:
1181
<A NAME="RD17803ST-1C">1c</A>
Lubineau A.
Augé J.
Queneau Y.
Synthesis
1994,
741
<A NAME="RD17803ST-1D">1d</A>
Li C.-J.
Chan TH.
Organic Reactions in Aqueous Media
Wiley;
New York:
1997.
<A NAME="RD17803ST-1E">1e</A>
Organic Synthesis in Water
Grieco PA.
Blacky Academic and Professional;
London:
1998.
<A NAME="RD17803ST-1F">1f</A>
Lubineau A.
Augé J.
Topics in Current Chemistry, In Modern Solvents in Organic Synthesis
Vol. 206:
Knochel P.
Springer-Verlag;
Berlin, Heidelberg:
1999.
p.1
<A NAME="RD17803ST-2">2</A>
Ribe S.
Wipf P.
Chem. Commun.
2001,
299
<A NAME="RD17803ST-3">3</A>
Ludwig R.
Angew. Chem. Int. Ed.
2001,
40:
1808
<A NAME="RD17803ST-4">4</A>
Keller E.
Feringa BL.
Synlett
1997,
842
<A NAME="RD17803ST-5">5</A>
Mori Y.
Kakumoto K.
Manabe K.
Kobayashi S.
Tetrahedron Lett.
2000,
41:
3107
<A NAME="RD17803ST-6">6</A>
Shibatomi K.
Nakahashi T.
Uozomi Y.
Synlett
2000,
1643
<A NAME="RD17803ST-7">7</A>
Bensa D.
Brunel J.-M.
Buono G.
Rodriguez J.
Synlett
2001,
715
<A NAME="RD17803ST-8">8</A>
Fischer RH.
Witz HM.
Synthesis
1980,
261
<A NAME="RD17803ST-9">9</A> For a review, see:
Ballini R.
Synlett
1999,
1009
<A NAME="RD17803ST-10A">10a</A>
Rosini G.
Ballini R.
Marotta E.
Tetrahedron
1989,
45:
5935
<A NAME="RD17803ST-10B">10b</A>
Ballini R.
Petrini M.
Rosini G.
Tetrahedron
1990,
46:
7531
<A NAME="RD17803ST-11">11</A>
Ballini R.
Bosica G.
Marcantoni E.
Vita P.
Bartoli G.
J. Org. Chem.
2000,
65:
5845
<A NAME="RD17803ST-12">12</A>
Barrett AGM.
Spilling CD.
Tetrahedron Lett.
1988,
29:
5733
<A NAME="RD17803ST-13A">13a</A>
Bergman ED.
Ginsburg D.
Pappo R.
Org. React.
1959,
10:
1795
<A NAME="RD17803ST-13B">13b</A>
Jung ME.
Semmelhack MF.
Comprehensive Organic Synthesis
Vol. 4:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.1-67
<A NAME="RD17803ST-14A">14a</A>
Ballini R.
Papa F.
Abate C.
Eur. J. Org. Chem.
1999,
87
<A NAME="RD17803ST-14B">14b</A>
Ballini R.
Barboni L.
Bosica G.
J. Org. Chem.
2000,
65:
6261
<A NAME="RD17803ST-14C">14c</A>
Ballini R.
Barboni L.
Bosica G.
Filippone P.
Peretti S.
Tetrahedron
2000,
56:
4095
<A NAME="RD17803ST-15A">15a</A>
Cookson RC.
Ray PS.
Tetrahedron Lett.
1982,
23:
3521
<A NAME="RD17803ST-15B">15b</A>
Yurdakul A.
Gurtner C.
Jung E.-S.
Lorenzi-Riatsch A.
Linden A.
Guggisberg A.
Bienz S.
Hesse M.
Helv. Chim. Acta
1998,
81:
1373
<A NAME="RD17803ST-15C">15c</A>
Ballini R.
Barboni L.
Bosica L.
Fiorini D.
Synthesis
2002,
2725
<A NAME="RD17803ST-16A">16a</A>
Rosini G.
Ballini R.
Marotta E.
Tetrahedron
1989,
45:
5935
<A NAME="RD17803ST-16B">16b</A>
Ballini R.
Petrini M.
Rosini G.
Tetrahedron
1990,
46:
7531
<A NAME="RD17803ST-17">17</A>
Rosini G.
Marotta E.
Synthesis
1986,
237
<A NAME="RD17803ST-18">18</A>
These starting materials were prepared in two steps, by transformation of commercially
available cycloalkanones into the enol acetates and subsequent treatment of the latter
compounds with acetyl nitrate.
Representative Procedure: To a solution of cyclo-heptanone (10 g, 90 mmol) in isopropenyl acetate (85 mL)
was added p-toluenesulfonic acid (2.9 g, 15 mmol). The reacting mixture was refluxed for 24 h
in an oil bath at 100 °C, and then it was cooled and diluted with Et2O
(20 mL). The solution was washed with sat. aq NaHCO3 (2 × 30 mL) and brine (2 × 30 mL). The organic layer was dried (Na2SO4) and evaporated, yielding 1-cycloheptenyl acetate (14.08 g, 100%), as a dark brown
oil. To a solution of this compound in CH2Cl2 (30 mL) at 0 °C was successively added acetic anhydride (28.26 mL, 30.55 g, 295.7
mmol) and 96% sulfuric acid (0.5 mL). A mixture of glacial acetic acid (2.25 mL, 2.39
g, 40.8 mmol) and 65% nitric acid (6.75 mL) was then added dropwise. After stirring
for an additional time of 3 h, the reacting mixture was diluted with CH2Cl2 (30 mL) and washed with brine (2 × 20 mL), and sat. aq NaHCO3 (3 × 20 mL, until no effervescence was observed). The organic layer was dried (Na2SO4) and evaporated and the residue was chromato-graphed on silica gel, eluting with
10:1 petroleum ether-ethyl acetate, yielding 7.482 g (54%) of compound 2a, as a pale yellow viscous oil. IR (NaCl): 1721 (C=O), 1158 and 1375 (NO2) cm-1. 1H NMR (250 MHz, CDCl3): δ = 5.34 (dd, 1 H, J = 9.5 and 3.9 Hz, H-2), 2.80-2.50 (m, 2 H, H-7), 2.40-2.20 (m,
1 H, H-3), 2.20-2.00 (m, 2 H, H-5,3), 2.00-1.75 (m, 2 H,
H-6,4), 1.75-1.50 (m, 2 H, H-6,4), 1.50-1.25 (m, 1 H, H-5). 13C NMR (63 MHz, CDCl3): δ = 201.7 (C-1), 94.1 (C-2), 41.7 (C-7), 29.1 (C-5), 29.0 (C-3), 26.6 (C-4), 24.2
(C-6). Anal. Calcd. for C7H11NO3 (M = 157): C, 53.50; H, 7.00; N, 8.92. Found: C, 53.37; H, 7.06; N, 8.85.
<A NAME="RD17803ST-19">19</A> For a review of MDR inhibitors, see:
Avendaño C.
Menéndez JC.
Curr. Med. Chem.
2002,
9:
159
<A NAME="RD17803ST-20A">20a</A>
Smith CD.
Zilfou JT.
Stratmann K.
Patterson GML.
Moore RE.
Mol. Pharmacol.
1995,
47:
241
<A NAME="RD17803ST-20B">20b</A>
Stratmann K.
Moore RE.
Bonjouklian R.
Deeter JB.
Patterson GML.
Shaffer S.
Smith CD.
Smitka TA.
J. Am. Chem. Soc.
1994,
116:
9935
<A NAME="RD17803ST-20C">20c</A>
Zhang X.
Smith CD.
Mol. Pharmacol.
1996,
49:
288
<A NAME="RD17803ST-21A">21a</A>
Bassetti M.
Cerichelli G.
Floris B.
Gazz. Chim. Ital.
1991,
121:
527
<A NAME="RD17803ST-21B">21b</A>
The rationalization given in this reference for the formation of 4 differs from the one proposed in Scheme
[1]
.
<A NAME="RD17803ST-22">22</A> For a similar effect with 1,3-diones, see:
Crispin DJ.
Vanstone AE.
Whitehurst JS.
J. Chem. Soc. C
1970,
10
<A NAME="RD17803ST-23">23</A>
Representative Procedure: To a vigorously stirred dispersion of α-nitrocycloheptanone 2a (150 mg, 0.96 mmol) in H2O (5 mL) was added acrolein (2.4 mmol, 2.5 equiv). The mixture was stirred at r.t.
for 8 h, and the aqueous phase was then extracted with Et2O (3 × 10 mL), which was dried (Na2SO4) and evaporated, yielding 172 mg (85%) of 3-(1′-nitro-2′-oxocycloheptyl)-propanal
(3a), as a pale yellow, viscous liquid. IR (NaCl): 1721 (C=O), 1542 and 1347 (NO2) cm-1. 1H NMR (250 MHz, CDCl3): δ = 9.77 (s, 1 H, CHO), 2.80-1.40 (m, 14 H). 13C NMR (63 MHz, CDCl3): δ = 202.5 (C-2′), 199.7 (C-1), 98.4 (C-1′), 41.2 (C-3′), 38.3 (C-2), 35.1 (C-5′),
29.3 (C-7′), 28.6 (C-6′), 25.5 (C-4′), 24.4 (C-2). Anal. Calcd for C10H15NO4: C, 56.33; H, 7.09; N, 6.57. Found: C, 56.59; H, 7.29; N, 6.49.
<A NAME="RD17803ST-24A">24a</A>
Ballini R.
Bosica G.
Tetrahedron Lett.
1996,
44:
8027
<A NAME="RD17803ST-24B">24b</A>
Ballini R.
Bosica G.
Eur. J. Org. Chem.
1998,
355
<A NAME="RD17803ST-25">25</A>
Ballini R.
Bosica G.
J. Org. Chem.
1997,
62:
425
<A NAME="RD17803ST-26">26</A>
For a similar effect of K2CO3 in the Michael reactions of 1,3-diones, see ref.
[21]