References
<A NAME="RG18903ST-1A">1a</A>
Kirschning A.
Jesberger M.
Schöning K.-U.
Synthesis
2001,
507
<A NAME="RG18903ST-1B">1b</A>
Veyrières A. In Carbohydrates in Chemistry and Biology
Part I, Vol. 1:
Ernst B.
Hart GW.
Sinaӱ P.
Wiley;
Weinheim:
2000.
p.367
<A NAME="RG18903ST-1C">1c</A>
Marzabadi H.
Franck RW.
Tetrahedron
2000,
56:
8385
<A NAME="RG18903ST-1D">1d</A>
Castro-Palomino JC.
Schmidt RR.
Synlett
1998,
501
<A NAME="RG18903ST-1E">1e</A>
Toshima K.
Tatsuta K.
Chem. Rev.
1993,
93:
1503
<A NAME="RG18903ST-2A">2a</A>
Lemieux RU.
Levine S.
Can. J. Chem.
1964,
42:
1473
<A NAME="RG18903ST-2B">2b</A>
Lemieux RU.
Morgan AR.
Can. J. Chem.
1965,
43:
2190
<A NAME="RG18903ST-2C">2c</A>
Thiem J.
Karl H.
Schwentner J.
Synthesis
1978,
696
<A NAME="RG18903ST-2D">2d</A>
Thiem J.
Klaffke W.
Top. Curr. Chem.
1990,
154:
285
<A NAME="RG18903ST-2E">2e</A>
Danishesky S.
Bilodeau MT.
Angew. Chem., Int. Ed. Engl.
1996,
35:
1380
<A NAME="RG18903ST-3A">3a</A>
Ito Y.
Ogawa T.
Tetrahedron Lett.
1987,
28:
4701
<A NAME="RG18903ST-3B">3b</A>
Ramesh S.
Franck SW.
J. Chem. Soc., Chem. Commun.
1989,
960
<A NAME="RG18903ST-3C">3c</A>
Preuss R.
Schmidt RR.
Synthesis
1988,
694
<A NAME="RG18903ST-3D">3d</A>
Grewal G.
Kaila N.
Franck RW.
J. Org. Chem.
1992,
57:
2084
<A NAME="RG18903ST-4">4</A>
Perez M.
Beau JM.
Tetrahedron Lett.
1989,
30:
75
<A NAME="RG18903ST-5A">5a</A>
Chong PY.
Roush WR.
Org. Lett.
2002,
4:
4523
<A NAME="RG18903ST-5B">5b</A>
Kirschning A.
Jesberger M.
Schöning K.-U.
Org. Lett.
2001,
53:
3623
<A NAME="RG18903ST-5C">5c</A>
Roush WR.
Narayan S.
Bennett CE.
Briner K.
Org. Lett.
1999,
1:
895
<A NAME="RG18903ST-5D">5d</A>
McDonald FE.
Reddy KS.
Díaz Y.
J. Am. Chem. Soc.
2000,
122:
4304
<A NAME="RG18903ST-5E">5e</A>
Blanchard N.
Roush WR.
Org. Lett.
1999,
1:
895
<A NAME="RG18903ST-5F">5f</A>
Kirschning A.
Eur. J. Org. Chem.
1998,
63:
2267
<A NAME="RG18903ST-5G">5g</A>
Roush WR.
Sebesta DP.
James RA.
Tetrahedron
1997,
53:
8837
<A NAME="RG18903ST-5H">5h</A>
Roush WR.
Sebesta DP.
Bennett CE.
Tetrahedron
1997,
53:
8825
<A NAME="RG18903ST-5I">5i</A>
Roush WR.
Bennett CE.
J. Am. Chem. Soc.
1999,
121:
3541
<A NAME="RG18903ST-6">6</A>
McDonald FE.
Reddy KS.
Angew. Chem. Int. Ed.
2001,
40:
3653
<A NAME="RG18903ST-7">7</A>
Hashimoto SI.
Sano A.
Sakamoto H.
Nakajima I.
Yanagiya Y.
Ikegami S.
Synlett
1995,
1271
<A NAME="RG18903ST-8">8</A>
Li H.
Chan M.
Zhao K.
Tetrahedron Lett.
1997,
38:
6143
<A NAME="RG18903ST-9">9</A>
Bielawska H.
Michalska M.
Tetrahedron Lett.
1998,
39:
9761
<A NAME="RG18903ST-10A">10a</A>
Oscarson S. In Carbohydrates in Chemistry and Biology
Part I, Vol. 1:
Ernst B.
Hart GW.
Sinaӱ P.
Wiley;
Weinheim:
2000.
p.93
<A NAME="RG18903ST-10B">10b</A>
Garegg PJ.
Adv. Carbohydr. Chem. Biochem.
1997,
52:
172
<A NAME="RG18903ST-11">11</A>
Jaumzens J.
Hofer E.
Jesberger M.
Sourkouni-Argirusi G.
Kirschning A.
Angew. Chem. Int. Ed.
2003,
42:
1166
<A NAME="RG18903ST-12">12</A>
Compound 2: To a solution of 4 mmol of the phosphine oxide in 26 mL of THF at -78 ºC, 4.2 mmol
of BuLi were added. The mixture was left to stir at low temperature for 30 min. A
solution of 1 mmol of 1 in 2 mL of THF was then added dropwise. The mixture was allowed to warm to r.t. overnight.
A sat. solution of NH4Cl was then added and the olefination product extrated with Et2O. The combination of ethereal layers was dried with MgSO4 and concentrated. The reaction crude was purified by MPLC (hexane to EtOAc/hexane
= 1:3) to render 2 (80% yield) as a mixture of diastereoisomers (E/Z-ratio = 87:13) as a syrup. Compound 2
E: 1H NMR (400 MHz, CDCl3): δ = 7.40-7.15 (m, 20 H, aromatics), 6.46 (d, 1 H, J
2,1 = 15.2 Hz, H-1), 5.87 (dd, 1 H, J
1,2 = 15.2 Hz, J
3,2 = 7.6 Hz, H-2), 4.65 (d, 1 H, J = 12.0 Hz, CH2Ph), 4.57 (d, 1 H, J = 11.4 Hz, CH2Ph), 4.52 (d, 1 H, J = 11.4 Hz, CH2Ph), 4.49 (s, 2 H, CH2Ph), 4.38 (d, 1 H, J = 12.0 Hz, CH2Ph), 4.16 (dd, 1 H, J
5,4 = 8.0 Hz, J
3,4 = 3.6 Hz, H-4), 4.00 (m, 1 H, H-5), 3.58 (m, 3 H, H-3, H-6), 2.76 (d, 1 H, J = 5.2 Hz, OH). 13C NMR (100.6 MHz, CDCl3):
δ = 140.8, 137.7, 137.5, 134.0 (C, aromatics), 130.2-126.0 (CH aromatics, C-1, C-2),
80.4 (C-3), 79.1 (C-4), 74.1, 73.2, 70.7 (CH2Ph), 70.1 (C-6), 69.9 (C-5). Compound 2
Z:
1H NMR (400 MHz, CDCl3): δ = 7.50-7.15 (m, 20 H, aromatics), 6.67 (d, 1 H, J
2,1 = 9.9 Hz, H-1), 6.12 (dd, 1 H, J
1,2 = 9.9 Hz, J
3,2 = 9.3 Hz, H-2), 4.88 (d, 1 H, J = 11.0 Hz, CH2Ph), 4.84 (d, 1 H, J = 11.5 Hz, CH2Ph), 4.73 (d, 1 H, J = 11.0 Hz, CH2Ph), 4.68 (d, 1 H, J = 12.0 Hz, CH2Ph), 4.63 (d, 1 H, J = 11.5 Hz, CH2Ph), 4.58 (d, 1 H, J = 12.0 Hz, CH2Ph), 4.21 (m, 1 H, H-5), 3.85 (dd, 1 H, J
5,4 = 6.9 Hz, J
3,4 = 3.9 Hz, H-4), 3.77 (m, 3 H, H-3, H-6), 3.12 (d, 1 H, J = 5.1 Hz, OH). 13C NMR (100.6 MHz, CDCl3): δ = 140.8, 137.7, 137.5, 134.0 (C, aromatics), 130.2-126.0 (CH aromatics, C-1,
C-2), 80.4 (C-3), 79.1 (C-4), 74.1, 73.2, 70.7 (CH2Ph), 70.1 (C-5), 64.9 (C-6).
<A NAME="RG18903ST-13">13</A>
Compound 3: A 0.175 M suspension of 1.3 mol of KH 30% in dry Et2O was added dropwise to a 0.085 M solution of 2 (1 mol) in dry Et2O at 0 ºC, and the resulting mixture was allowed to stir for 30 min until complete
formation of the alcoholate. The mixture was cooled to -78 ºC and a 0.43 M solution
of iodine (3 mol) in Et2O was then added. The reaction was allowed to stir at low temperature for 1 h. A solution
of Na2S3O3 was then added and the reaction product extracted with Et2O. The combination of the etheral layers was concentrated and the residue purified
by radial chromatography to afford 3 (61%) as a yellowish syrup. Compound 3: [α]D
25 +67.8 (c 0.0217, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 7.70-7.10 (m, 20 H, aromatics), 5.68 (s, 1 H, H-1), 4.88 (d, 1 H, J = 10.4 Hz, CH2Ph), 4.87 (d, 1 H, J
3,2 = 3.6 Hz, H-2), 4.72 (d, 1 H, J = 11.2 Hz, CH2Ph), 4.70 (d, 1 H, J = 11.6 Hz, CH2Ph), 4.54 (d, 1 H, J = 11.2 Hz, CH2Ph), 4.52 (d, 1 H, J = 10.4 Hz, CH2Ph), 4.48 (d, 1 H, J = 11.6 Hz, CH2Ph), 4.41 (ddd, 1 H, J
4,5 = 8.8 Hz, J
6a,5 = 4.4 Hz, J
6b,5 = 1.6 Hz, H-5), 3.99 (dd, 1 H, J
5,4 = 8.8 Hz, J
3,4 = 8.4 Hz, H-4), 3.85 (dd, 1 H, J
6b,6a = 10.8 Hz, J
5,6a = 4.4 Hz, H-6a), 3.73 (dd, 1 H, J
6a,6b = 10.8 Hz, J
5,6b = 1.6 Hz, H-6b), 3.10 (dd, 1 H, J
4,3 = 8.4 Hz, J
2,3 = 3.6 Hz, H-3). 13C NMR (100.6 MHz, CDCl3): δ = 138.0, 137.2, 133.9 (C, aromatics), 132.0-127.4 (CH, aromatics), 89.6 (C-1),
77.5 (C-3), 76.2 (C-4), 75.3 (CH2Ph), 73.3 (CH2Ph, C-5), 71.0 (CH2Ph), 68.7 (C-6), 34.8 (C-2).
<A NAME="RG18903ST-14A">14a</A>
Landais Y.
Panchenault D.
Synlett
1995,
1191
<A NAME="RG18903ST-14B">14b</A>
Bravo F.
Castillón S.
Eur. J. Org. Chem.
2001,
507
<A NAME="RG18903ST-15">15</A>
Suzuki K.
Mukaiyama T.
Chem. Lett.
1982,
1525
<A NAME="RG18903ST-16">16</A>
Compound 5: To a solution of 4 mmol of the phosphine oxide in 26 mL of THF at -78 ºC, 4.2 mmol
of BuLi were added. The mixture was left to stir at low temperature for 30 min. A
solution of 1 mmol of the 4 in 2 mL of THF was then added dropwise. The mixture was allowed to warm to r.t. first
and then heated to reflux. A sat. solution of NH4Cl was then added and the olefination product extrated with Et2O. The combination of ethereal layers was dried with MgSO4 and concentrated. The reaction crude was purified by MPLC (hexane to EtOAc/hexane
= 1:3) to render 5 (72% yield) as a mixture of diastereoisomers (E/Z-ratio = 80:20) as a syrup. Compound 5
E: 1H NMR (400 MHz, CDCl3): δ = 7.39-7.25 (m, 20 H, aromatics), 6.54 (d, 1 H, J
2,1 = 15.1 Hz, H-1), 5.94 (dd, 1 H, J
1,2 = 15.1 Hz, J
3,2 = 8.4 Hz, H-2), 4.75 (d, 1 H, J = 10.8 Hz, CH2Ph), 4.67 (d, 1 H, J = 12.0 Hz, CH2Ph), 4.56 (d, 1 H, J = 10.8 Hz, CH2Ph), 4.51 (d, 1 H, J = 12.0 Hz, CH2Ph), 4.48 (d, 1 H, J = 12.0 Hz, CH2Ph), 4.40 (d, 1 H, J = 12.0 Hz, CH2Ph), 4.22 (dd, 1 H, J
2,3 = 8.4 Hz, J
4,3 = 4.4 Hz, H-3), 3.82 (m, 1 H, H-5), 3.69 (dd, 1 H, J
5,4 = 7.6 Hz, J
3,4 = 4.4 Hz, H-4), 3.61 (m, 2 H, H-6), 2.78 (bs, 1 H, OH). 13C NMR (100.6 MHz, CDCl3): δ = 138.2, 138.1, 137.8, 134.6 (C, aromatics), 129.1-126.9 (CH, aromatics), 128.8
(C-1), 128.4 (C-2), 81.3 (C-3), 80.8 (C-4), 74.2, 73.4 (CH2Ph), 70.9 (C-6), 70.8 (C-5), 70.5 (CH2Ph). Compound 5
Z: 1H NMR (400 MHz, CDCl3): δ = 7.39-7.25 (m, 20 H, aromatics), 6.62 (d, 1 H, J
21 = 9.6 Hz, H-1), 6.00 (pseudo t, 1 H, J
12 = J
32 = 9.6 Hz, H-2), 4.89-4.35 (m, 6 H, CH2Ph), 3.91 (m, 1 H, H-5), 3.83 (dd, 1 H, J
54 = 7.6 Hz, J
34 = 3.4 Hz, H-4), 3.71 (dd, 1 H, J
23 = 9.6 Hz, J
43 = 3.4 Hz, H-3), 3.67 (m, 2 H, H-6), 2.85 (bs, 1 H, OH). 13C NMR (100.6 MHz, CDCl3): δ = 138.1, 137.8, 135.5, 134.4 (C, aromatics), 129.8-126.5 (CH, aromatics, C-1,
C-2), 80.9 (C-3), 77.1 (C-4), 74.1, 73.3 (CH2Ph), 71.0, 70.8, 70.5 (C-5, C-6, CH2Ph).
<A NAME="RG18903ST-17">17</A>
Freeman F.
Robarge KD.
Carbohydr. Res.
1986,
154:
270
<A NAME="RG18903ST-18">18</A>
Compound 6: To a 0.5 M solution of 5 (0.084 g, 0.16 mmol) (E/Z = 2:3) in CH3CN, NaHCO3 (0.48 mmol) was added. The mixture was cooled to 0 ºC and left to stir at this temperature
for 5 min. NIS (0.48 mol) was then added and the reaction mixture was allowed to warm
to r.t. and stirred for 8 h. The mixture was diluted with Et2O and washed with a sat. solution of Na2S3O3. The combined aqueous layer was extracted with Et2O. The combination of ethereal layers was dried with MgSO4 and concentrated. The residue was purified by radial chromatography to afford 0.060
g (58% yield) as a β/α mixture = 2:3. Compound 6β: [α]D
25 +16.0 (c 0.7708, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 7.70-7.20 (m, 20 H, aromatics), 5.11 (d, 1 H, J
2,1 = 10.6 Hz, H-1), 4.92 (d, 1 H, J = 10.4 Hz, CH2Ph), 4.75 (d, 1 H, J = 10.4 Hz, CH2Ph), 4.62 (d, 1 H, J = 11.4 Hz, CH2Ph), 4.60 (d, 1 H, J = 12.4 Hz, CH2Ph), 4.52 (d, 1 H, J = 11.4 Hz, CH2Ph), 4.51 (d, 1 H, J = 12.4 Hz, CH2Ph), 4.18 (m, 1 H, H-3, H-5), 4.02 (dd, 1 H, J
1,2 = 10.4 Hz, J
3,2 = 2.4 Hz, H-2), 3.72 (m, 1 H, H-4, H-6a, H-6b). 13C NMR (100.6 MHz, CDCl3): δ = 138.4, 138.1, 137.6 (C, aromatics), 133.2 (CH, aromatic), 131.7 (C, aromatic),
128.7-127.4 (CH, aromatics), 84.3
(C-1), 78.7 (C-3), 76.1 (C-4), 75.9 (C-5), 75.7, 73.3, 72.2 (CH2Ph), 69.3 (C-6), 31.8 (C-2). Compound 6α (spectroscopical data extracted from the α/β-mixture spectrum): 1H NMR (400 MHz, CDCl3): δ = 7.70-7.20 (m, 20 H, aromatics), 5.32 (d, 1 H, J
2,1 = 5.4 Hz, H-1), 4.91 (d, 1 H, J = 11.6 Hz, CH2Ph), 4.79 (d, 1 H, J = 10.8 Hz, CH2Ph), 4.68 (ddd, 1 H, J
4,5 = 10.0 Hz, J
6a,5 = 2.8 Hz, J
6b,5 = 2.4 Hz, H-5), 4.57 (dd, J
1,2 = 5.6 Hz, J
3,2 = 2.4 Hz, H-2), 4.52 (d, 2 H, J = 10.4 Hz, CH2Ph), 4.42 (d, 1 H, J = 11.2 Hz, CH2Ph), 4.40 (d, 1 H, J = 12.4 Hz, CH2Ph), 4.09 (dd, 1 H, J
2,3 = 2.4 Hz, J
4,3 = 2.4 Hz, H-3), 3.77 (m, 2 H, H-4, H-6a), 3.62 (dd, 1 H, J
6a,6b = 10.8 Hz, J
5,6b = 2.4 Hz, H-6b). 13C NMR (100.6 MHz, CDCl3): δ = 131.4-126.8 (C, CH, aromatics), 90.0 (C-1), 78.1, 76.3, 75.6, 73.5, 72.0, 68.8,
67.7 (C-3, C-4, C-5, C-6, 3 × CH2Ph), 27.0 (C-2).
<A NAME="RG18903ST-19">19</A>
General Procedure of Glycosylation: A solution of the glycosyl donor (1 mmol) and the glycosyl acceptor (2 mmol) in
CH2Cl2 (4 mL) were allowed to stir with 4 Å molecular sieves for 2 h. The mixture was then
cooled to -78 ºC, and NIS (3 mmol) and TfOH (0.2 mmol) were added. The mixture was
allowed to warm to -40 ºC and stirred for 2-4 h. The reaction mixture was then diluted
with CH2Cl2 and washed with a solution of Na2S3O3. The ethereal layer was dried with Na2SO4 and concentrated. The residue was then purified by radial chromatography.
<A NAME="RG18903ST-20">20</A>
Veeneman GH.
van Leeuwen SH.
van Boom JH.
Tetrahedron Lett.
1990,
31:
1331