References
For recent reviews see:
<A NAME="RS08303ST-1A">1a</A>
Sweeney JB.
Chem. Soc. Rev.
2002,
31:
247
<A NAME="RS08303ST-1B">1b</A>
Chemla F.
Ferreira F.
Curr. Org. Chem.
2002,
6:
539
<A NAME="RS08303ST-1C">1c</A>
Watson IDG.
Yudin AK.
Curr. Opin. Drug Discovery Dev.
2002,
5:
906
<A NAME="RS08303ST-1D">1d</A>
Zwanenburg B.
Ten Holte P.
Top. Curr. Chem.
2001,
216:
93
<A NAME="RS08303ST-1E">1e</A>
McCoull W.
Davis F.
Synthesis
2000,
10:
1347
<A NAME="RS08303ST-1F">1f</A>
Tanner D.
Angew. Chem., Int. Ed. Engl.
1994,
33:
599
<A NAME="RS08303ST-1G">1g</A>
Padwa A.
Woolhouse AD. In
Comprehensive Heterocyclic Chemistry
Vol. 7:
Lowski W.
Pergamon;
Oxford:
1984.
p.47
<A NAME="RS08303ST-2A">2a</A>
Crotti P.
Di Bussolo V.
Favero L.
Macchia F.
Renzi G.
Roselli G.
Tetrahedron
2002,
58:
7119
<A NAME="RS08303ST-2B">2b</A>
Katagiri T.
Takahashi M.
Fujiwara Y.
Ihara H.
Uneyama K.
J. Org. Chem.
1999,
64:
7323
<A NAME="RS08303ST-3A">3a</A>
Wipf P.
Venkatraman S.
Miller CP.
Tetrahedron. Lett.
1995,
36:
3639
<A NAME="RS08303ST-3B">3b</A>
Church NJ.
Young DW.
Tetrahedron Lett.
1995,
36:
151
<A NAME="RS08303ST-4">4</A>
Osowska-Pacewicka K.
Zwierzak A.
Synth. Commun.
1998,
28:
1127
<A NAME="RS08303ST-5">5</A>
Cantrill AA.
Osborn HMI.
Sweeney J.
Tetrahedron
1998,
54:
2181
<A NAME="RS08303ST-6A">6a</A>
Lygo B.
Tetrahedron
1995,
51:
12859
<A NAME="RS08303ST-6B">6b</A>
Baldwin JE.
Spivey AC.
Schofield CJ.
Sweeney JB.
Tetrahedron
1993,
49:
6309
<A NAME="RS08303ST-7">7</A>
Li Z.
Fernandez M.
Jacobsen EN.
Org. Lett.
1999,
1:
1611
<A NAME="RS08303ST-8">8</A>
Müller P.
Nury P.
Helv. Chim. Acta
2001,
84:
662
<A NAME="RS08303ST-9">9</A>
Meguro M.
Yamamoto Y.
Heterocycles
1996,
43:
2473
<A NAME="RS08303ST-10A">10a</A>
Vedejs E.
Klaspars A.
Warner DL.
Weiss AH.
J. Org. Chem.
2001,
66:
7542
<A NAME="RS08303ST-10B">10b</A>
Wang S.
Kohn H.
J. Org. Chem.
1996,
61:
9202
<A NAME="RS08303ST-10C">10c</A>
Ling R.
Yoshida M.
Mariano PS.
J. Org. Chem.
1996,
61:
4439
<A NAME="RS08303ST-11">11</A>
Brown F.
Vaccine
2001,
20:
322
<A NAME="RS08303ST-12A">12a</A> 1-Arylpiperazines are known ligands for serotonine receptors:
Lopez-Rodriguez ML.
Ayala D.
Benhamu B.
Morcillo MJ.
Viso A.
Curr. Med. Chem.
2002,
9:
443
<A NAME="RS08303ST-12B">12b</A> Diketopiperazines are used as peptidomimetics:
Dinsmore CJ.
Beshore DC.
Tetrahedron
2002,
58:
3297
<A NAME="RS08303ST-13">13</A>
Caiazzo A.
Dalili S.
Yudin AK.
Org. Lett.
2002,
4:
2597
<A NAME="RS08303ST-14">14</A>
Sasaki M.
Dalili S.
Yudin AK.
J. Org. Chem.
2003,
68:
2045
<A NAME="RS08303ST-15">15</A>
Holz J.
Monsees A.
Jiao H.
You J.
Komarov IV.
Fischer C.
Drauz K.
Börner A.
J. Org. Chem.
2003,
68:
1701
<A NAME="RS08303ST-16">16</A>
Zhuang W.
Thorhauge J.
Jørgensen KA.
Chem. Commun.
2000,
459
<A NAME="RS08303ST-17A">17a</A>
Mohri K.
Kanie A.
Horiguchi Y.
Isobe K.
Heterocycles
1999,
51:
2377
<A NAME="RS08303ST-17B">17b</A>
Murphy JP.
Hadden M.
Stevenson PJ.
Tetrahedron
1997,
53:
11827
<A NAME="RS08303ST-18A">18a</A>
Kubota K.
Leighton JL.
Angew. Chem., Int. Ed.
2003,
42:
946
<A NAME="RS08303ST-18B">18b</A>
Lucet D.
Le Gall T.
Mioskowski C.
Angew. Chem., Int. Ed. Engl.
1998,
37:
2580
<A NAME="RS08303ST-18C">18c</A>
Bennani YL.
Hanessian S.
Chem. Rev.
1997,
97:
3161
<A NAME="RS08303ST-18D">18d</A>
Reetz MT.
Jaeger R.
Drewlies R.
Hübel M.
Angew. Chem., Int. Ed. Engl.
1991,
30:
103
<A NAME="RS08303ST-19A">19a</A>
Szmuszkovicz J.
Von Voigtlander PF.
J. Med. Chem.
1982,
25:
1125
<A NAME="RS08303ST-19B">19b</A>
Millan MJ.
Trends Pharmacol. Sci.
1990,
11:
70
<A NAME="RS08303ST-19C">19c</A>
Cowan A.
Gmerek DE.
Trends Pharmacol. Sci.
1986,
7:
69
<A NAME="RS08303ST-20">20</A>
Rajagopalan P.
Scribner RM.
Pennev P.
Schmidt WK.
Tam SW.
Steinfels GF.
Cook L.
Bioorg. Med. Chem. Lett.
1992,
2:
715
<A NAME="RS08303ST-21">21</A>
Costello GF.
James R.
Shaw JS.
Slater AM.
Stutchbury NCJ.
J. Med. Chem.
1991,
34:
181
<A NAME="RS08303ST-22">22</A>
To a solution of 7-azabicyclo[4.1.0]heptane (1)
[22]
(200 mg, 2.06 mmol) and methyl acetoacetate (2a) (1.03 mmol%) in 4 mL of THF, 1 mol% of the acid additive was added. The resulting
mixture was stirred for 16 h at r.t. The conversion and selectivity were determined
through analysis of the crude reaction mixture by GC (biphenyl as internal standard)
and 1H NMR.
<A NAME="RS08303ST-23">23</A>
Clarke PA.
Kayaleh NE.
Smith MA.
Baker JR.
Bird SJ.
Chan C.
J. Org. Chem.
2002,
67:
5226
<A NAME="RS08303ST-24">24</A>
Hamilton WC.
Ibers JA.
Hydrogen Bonding in Solids
WA Benjamin Inc.;
New York:
1968.
p.16
<A NAME="RS08303ST-25">25</A>
To a solution of 7-azabicyclo[4.1.0]heptane (1) (200 mg, 2.06 mmol) in 4 mL of CH2Cl2, Yb(OTf)3 (12.7 mg, 1 mol%) was added. The resulting mixture was stirred for 16 h at r.t. The
mixture was treated with 5% NaOH and the aq layer was extracted with CH2Cl2 (3 × ). The combined organic layers were dried over Na2SO4 and the solvent and unconverted aziridine were evacuated. The residue was distilled
at reduced pressure to give 30 mg (15% yield) of trans-2-(7-aza-bicyclo[4.1.0]hept-7-yl)cyclohexylamine(5) as clear oil.
1H NMR (CDCl3, 400 MHz): δ = 2.82 (t, J = 10 Hz, 1 H), 1.65-1.90 (m, 9 H), 1.50 (m, 1 H), 1.05-1.42 (m, 9 H), 0.96 (t, J = 10 Hz, 1 H). 13C NMR (CDCl3, 100 MHz): δ = 75.2, 56.8, 39.8, 34.1, 33.5, 30.7, 25.1, 24.9, 24.7, 24.6, 20.6,
20.5. HRMS-FAB: m/z calcd for C12H22N2: 194.32016, found: 194.31995.
<A NAME="RS08303ST-26">26</A>
General Procedure for the Preparation of (
Z
)-3-[2-(7-Aza-bicyclo[4.1.0]hept-7-yl)-cyclohexylamino]-2-butenoate (
3)
. To a solution of 7-azabicyclo[4.1.0]hep-tane(1) (200 mg, 2.06 mmol) and acetoacetate(2) (1.03 mmol) in 4 mL of CH2Cl2, Yb(OTf)3 (12.7 mg, 1 mol%) was added. The resulting mixture was stirred 16 h at r.t. Upon
completion of the reaction (by GC) the solvent was eva-cuated and the crude oil was
purified by column chromato-graphy (silica gel, 80:20 hexanes-EtOAc, with 5% Et3N).
3a (R = Me, R1 = H): Isolated as a white solid (86%, mp 51-53 °C). 1H NMR (CDCl3, 400 MHz): δ = 8.59 (d, J = 10.2 Hz, 1 H), 4.39 (s, 1 H), 3.61 (s, 3 H), 3.40-3.48 (m, 1 H), 2.03 (s, 3 H),
1.88 (d, J = 12.1 Hz, 2H), 1.61-1.75 (m, 7 H), 1.10-1.39 (m, 10 H). 13C NMR (CDCl3, 100 MHz): δ = 171.0, 161.6, 80.9, 73.8, 57.7, 49.6, 40.8, 33.7, 33.6, 31.3, 25.0,
24.6, 24.4, 20.7, 20.4, 20.1. HRMS-FAB: m/z calcd for C17H28N2O2: 292.21508, found: 292.21487.
3b (R = Et, R1 = H): Isolated as a clear oil (83%). 1H NMR (CDCl3, 400 MHz): δ = 8.58 (d, J = 10 Hz, 1 H), 4.38 (s, 1 H), 4.08 (q, J = 4 Hz, 2 H), 3.42 (m, 1 H), 2.02 (s, 3 H), 1.87 (m, 2 H), 1.55-1.78 (m, 7 H), 1.06-1.39
(m, 10 H), 1.25 (t,
J = 4 Hz, 3 H). 13C NMR (CDCl3, 100 MHz): δ = 170.8, 161.6, 81.3, 73.8, 58.1, 57.7, 40.9, 33.8, 33.7, 31.4, 25.0,
24.6, 24.4, 20.8, 20.4, 20.2, 14.7. HRMS-FAB: m/z calcd for C18H30N2O2: 306.44848, found: 306.44818.
3c (R = Pr, R1 = H): Isolated as a clear oil (82%). 1H NMR (CDCl3, 400 MHz): δ = 8.60 (d, J = 10 Hz, 1 H), 4.40 (s, 1 H), 3.98 (t, J = 6.8Hz, 2 H), 3.38-3.47 (m, 1 H), 2.02 (s, 3 H), 1.87 (d, J = 15 Hz, 2 H), 1.60-1.75 (m, 9 H), 1.1-1.38 (m, 10 H), 0.943 (t, J = 7.6Hz, 3 H). 13C NMR (CDCl3, 100 MHz): δ = 170.9, 161.5, 81.3, 73.9, 63.9, 57.7, 40.9, 33.8, 33.7, 31.4, 25.1,
24.6, 24.5, 22.5, 20.8, 20.5, 20.2, 10.5. HRMS-FAB: m/z: calcd for C19H32N2O2: 320.47536, found: 320.47494
3d (R = i-Pr, R1 = H): Isolated as a clear oil (70%). 1H NMR (CDCl3, 400 MHz): δ = 8.62 (d, J = 10 Hz, 1 H), 4.92-5.00 (m, 1 H), 4.36 (s, 1 H), 3.38-3.47 (m, 1 H), 2.02 (s, 3
H), 1.87 (d, J = 14 Hz, 2 H), 1.6-1.76 (m, 7 H), 1.23 (dd, J
1 = 6.4 Hz, J
2 = 6.4 Hz, 6 H), 1.1-1.4 (m, 10 H). 13C NMR (CDCl3, 100 MHz): δ = 170.5, 161.4, 81.9, 73.9, 64.8, 57.8, 40.9, 33.8, 33.7, 31.4, 25.1,
24.7, 24.6, 24.5, 22.3, 20.8, 20.5, 20.2. HRMS-FAB: m/z calcd for C19H32N2O2: 320.47536, found: 320.47496.
3e (R = n-Bu, R1 = H): Isolated as a clear oil (85%). 1H NMR (CDCl3, 400 MHz): δ = 8.59 (d, J = 10 Hz, 1 H), 4.40 (s, 1 H), 4.03 (t, J = 6.8Hz, 2 H), 3.39-3.48 (m, 1 H), 2.02 (s, 3 H), 1.87 (d, J = 12 Hz, 2 H), 1.59-1.75 (m, 9 H), 1.10-1.44 (m, 12 H), 0.93 (t, J = 7.2 Hz, 3 H). 13C NMR (CDCl3, 100 MHz): δ = 171.0, 161.6, 81.4, 73.9, 62.2, 57.8, 41.0, 33.9, 33.8, 31.5, 31.3,
25.1, 24.7, 24.5, 20.9, 20.6, 20.3, 19.4, 13.9. HRMS-FAB: m/z calcd for C20H34N2O2: 334.50224, found: 334.50247.
3f (R = t-Bu, R1 = H): Isolated as a clear oil (82%). 1H NMR (CDCl3, 400 MHz): δ = 8.54 (d, J = 10 Hz, 1 H), 4.32 (s, 1 H), 3.36-3.44 (m, 1 H), 1.98 (s, 3 H), 1.87 (d, J = 12.8Hz, 2 H), 1.7-1.8 (m, 6 H), 1.46 (s, 9 H), 1.1-1.4 (m, 11 H). 13C NMR (CDCl3, 100 MHz): δ = 171.0, 160.9, 83.1, 77.5, 73.9, 57.9, 41.0, 34.0, 33.8, 31.6, 28.8,
25.2, 24.7, 24.68, 24.64, 20.9, 20.6, 20.2. HRMS-FAB: m/z calcd for C20H34N2O2: 334.50224, found: 334.50249.
3g (R = Allyl, R1 = H): Isolated as a clear oil (80%). 1H NMR (CDCl3, 400 MHz): δ = 8.58 (d, J = 10 Hz, 1 H), 5.91-6.00 (m, 1 H), 5.29 (dd, J
1 = 17.2 Hz, J
2 = 3.2 Hz, 1 H), 5.17 (dd, J
1 = 9.2 Hz, J
2 = 2.6 Hz, 1 H), 4.55 (dt, J
1 = 5.2 Hz, J
2 = 1.5 Hz, 2 H), 4.44 (s, 1 H), 3.92-3.48 (m, 1 H), 2.04 (s, 3 H), 1.87 (d, J = 12.8 Hz, 2 H), 1.60-1.74 (m, 7 H), 1.10-1.38 (m, 10 H). 13C NMR (CDCl3, 100 MHz): δ = 170.3, 161.9, 133.9, 116.7, 81.0, 73.9, 63.1, 57.9, 40.9, 33.8, 33.7,
31.4, 25.1, 24.6, 24.5, 20.8, 20.5, 20.3. HRMS-FAB: m/z = calcd for C19H30N2O2: 318.45948, found: 318.45966.
3h (R = Cy, R1 = H): Isolated as a clear oil (75%). 1H NMR (CDCl3, 400 MHz): δ = 8.62 (d, J = 10.4 Hz, 1 H), 4.67-4.71 (m, 1 H), 4.38 (s, 1 H), 3.38-3.47 (m, 1 H), 2.01 (s,
3 H), 1.87 (d, J = 8.4 Hz, 4 H), 1.62-1.76 (m, 10 H), 1.07-1.41 (m, 15 H). 13C NMR (CDCl3, 100 MHz): δ = 170.6, 161.6, 81.9, 74.0, 70.4, 57.9, 50.7, 41.1, 33.9, 33.8, 32.4,
31.5, 25.7, 25.2, 24.7, 24.6, 24.3, 20.9, 20.6, 20.3. HRMS-FAB: m/z calcd for C22H36N2O2: 360.54012, found: 360.5399.
3j (R = Bn, R1 = H): Isolated as a clear oil (75%). 1H NMR (CDCl3, 400 MHz): δ = 8.59 (d, J = 10 Hz, 1 H), 7.31-7.38 (m, 3 H), 7.25-7.29 (m, 2 H), 5.10 (s, 2 H), 4.48 (s, 1
H), 3.39-3.48 (m, 1 H), 2.03 (s, 3 H), 1.86 (d, J = 12 Hz, 2 H), 1.57-1.75 (m, 7 H), 1.10-1.38 (m, 10 H). 13C NMR (CDCl3, 100 MHz): δ = 170.5, 162.2, 137.8, 128.5, 127.8, 127.7, 81.2, 73.9, 64.2, 58.0,
41.1, 33.9, 33.8, 31.5, 25.2, 24.7, 24.6, 20.9, 20.6, 20.4. HRMS-FAB: m/z calcd for C23H32N2O2: 368.51936, found: 368.51961.
3k (R, R1 = Me): Isolated as a clear oil in 62% yield. 1H NMR (CDCl3, 400 MHz): δ = 9.39 (d, J = 9.6 Hz, 1 H), 3.69 (s, 3 H), 3.46-3.55 (m, 1 H), 2.09 (s, 3 H), 1.89 (d, J = 11.2 Hz, 2 H), 1.83 (s, 3 H), 1.71-1.77 (m, 6 H), 1.11-1.39 (m, 11 H). 13C NMR (CDCl3, 100 MHz): δ = 171.6, 159.8, 84.9, 74.1, 57.7, 50.2, 40.6, 33.9, 31.3, 25.1, 24.6,
24.5, 24.4, 20.8, 20.6, 15.9, 12.7. HRMS-FAB: m/z calcd for C18H30N2O2: 306.44848, found: 306.44908.
3m (R = Me, R1 = allyl): Isolated as a clear oil in 63% yield. 1H NMR (CDCl3, 400 MHz): δ = 9.54 (d, J = 9.6 Hz, 1 H), 5.79-5.92 (m, 1 H), 4.90-5.02 (m, 2 H), 3.68 (s, 3 H), 3.47-3.57
(m, 1 H), 3.02-3.06 (m, 2 H), 2.08 (s, 3 H), 1.91 (d, J = 12.3 Hz, 2 H), 1.72-1.80 (m, 7 H), 1.12-1.44 (m, 10 H). 13C NMR (CDCl3, 100 MHz): δ = 171.4, 160.8, 138.8, 112.8, 87.7, 73.8, 57.7, 50.3, 40.7, 34.0, 33.9,
31.3, 25.0, 24.7, 24.6, 24.4, 20.8, 20.5, 15.5. HRMS-FAB: m/z calcd for C20H32N2O2: 332.24638, found: 332.24582.
3n (R = Me, R1 = Bn): Isolated as a clear oil in 60% yield. 1H NMR (CDCl3, 400 MHz): δ = 9.69 (d, J = 9.6 Hz, 1 H), 7.14-7.30 (m, 5 H), 3.72 (s, 2 H), 3.68 (s, 3 H), 3.50-3.54 (m, 1
H), 2.05 (s, 3 H), 1.92 (d, J = 10.2 Hz, 2 H), 1.72-1.84 (m, 5 H), 1.10-1.61 (m, 12 H). 13C NMR (CDCl3, 100 MHz): δ = 171.7, 161.4, 143.2, 128.0, 127.8, 125.3, 88.9, 73.7, 57.9, 50.3,
40.7, 34.0, 33.9, 32.7, 31.4, 25.0, 24.7, 24.6, 24.4, 20.7, 20.5, 15.9. HRMS-FAB:
m/z calcd for C24H34N2O2: 382.54624, found: 382.54568.
<A NAME="RS08303ST-27">27</A>
Mikami K.
Terada M.
Matsuzawa H.
Angew. Chem. Int. Ed.
2002,
41:
3554 ; and references therein cited
<A NAME="RS08303ST-28">28</A>
Compound 3a (200 mg, 0.685 mmol) and benzenethiol (6) (94 mg, 0.854 mmol) were dissolved in 6 mL of degassed CH3CN. The reaction mixture was stirred at r.t. for 16 h. The crude 1H NMR of the reaction mixture showed completion of the reaction and presence of the
ring opening compound in two diastereomeric forms (7a and 8a; 10% de). The solvent was then removed in vacuo and the residue was eluted on silica
(CH2Cl2-MeOH, 98:2) to provide compounds 7a and 8a as clear oils in an inseparable mixture (60% yield), from which 1H NMR were taken.
1H NMR (CDCl3, 400 MHz): δ = 8.71 (d, J = 9.9 Hz, 1 H), 8.63 (d, J = 9.9 Hz, 1 H), 7.45-7.38 (m, 2 × 2 H), 7.33-7.19 (m, 2 × 3 H), 4.48 (s, 1 H), 4.44
(s, 1 H), 3.65 (s, 3 H), 3.60 (s, 3 H), 3.22 (m, 2 × 1 H), 2.97 (m, 2 × 1 H), 2.57
(m, 2 × 1 H), 2.49 (m, 2 × 1 H), 2.17-1.86 (m, 2 × 5 H), 1.99 (s, 3 H), 1.97 (s, 3
H), 1.82-1.59 (m, 2 × 4 H), 1.52-1.06 (m, 2 × 8 H). HRMS-FAB: m/z calcd for C23H34N2O2S: 403.24192, found: 403.24125.
<A NAME="RS08303ST-29">29</A>
Compounds 10a and 11a were prepared from 2-methyl-aziridine (9) using standard procedure (see ref.
[26]
). Upon completion of the reaction (16 h by GC) the solvent was evacuated and the
crude oil was purified by column chromatography (silica gel, 90:10 hexanes-EtOAc,
with 5% Et3N). Combined yield: 64% (oils, 8% de).
A: 1H NMR (CDCl3, 300 MHz): δ = 8.49 (d, J = 7.8 Hz, 1 H), 4.43 (s, 1 H), 3.77 (m, 1 H), 3.61 (s, 3 H), 2.35 (m, 1 H), 2.21
(m, 1 H), 1.98 (s, 3 H), 1.49 (d, J = 3 Hz, 1 H), 1.35 (m, 1 H), 1.25 (m, 4 H), 1.17 (d, J = 5.4 Hz, 3 H). 13C NMR (CDCl3, 75 MHz): δ = 170.9, 161.3, 81.8, 67.5, 49.8, 49.5, 34.7, 34.6, 20.4, 19.6, 18.1.
HRMS-FAB: m/z calcd for C11H20N2O2: 212.29324, found: 212.29277.
B: 1H NMR (CDCl3, 300 MHz): δ = 8.56 (d, J = 8.4 Hz, 1 H), 4.43 (s, 1 H), 3.81 (m, 1 H), 3.62 (s, 3 H), 2.63 (dd, J = 12 Hz, 5.3 Hz, 1 H), 2.00 (s, 3 H), 1.96 (dd, J = 12 Hz, 5.3 Hz, 1 H), 1.44 (m, 2 H), 1.20 (m, 4 H), 1.12 (d, J = 5.4 Hz). 13C NMR (CDCl3, 75 MHz): δ = 171.0, 161.3, 81.6, 67.7, 49.8, 49.6, 35.9, 33.8, 20.6, 19.7, 18.1.
HRMS-FAB: m/z calcd for C11H20N2O2: 212.29324, found: 212.29295.