Synlett 2003(13): 2005-2008  
DOI: 10.1055/s-2003-42037
LETTER
© Georg Thieme Verlag Stuttgart · New York

A New Preparative Route to Substituted Dibenzofurans by Benzannulation Reaction. An Application to the Synthesis of Cannabifuran

Stefano Serra*, Claudio Fuganti
C.N.R. Istituto di Chimica del Riconoscimento Molecolare, Sezione ‘Adolfo Quilico’ presso Dipatimento di Chimica, Materiali ed Ingegneria Chimica ‘Giulio Natta’ del Politecnico, Via Mancinelli 7, 20133 Milano, Italy
Fax: +39(2)23993080; e-Mail: stefano.serra@polimi.it;
Weitere Informationen

Publikationsverlauf

Received 10 July 2003
Publikationsdatum:
08. Oktober 2003 (online)

Abstract

A new regioselective pathway to substituted dibenzo­furan derivatives is described here. According to this procedure substituted 1-acetoxy-3-alkoxycarbonyl dibenzofurans are obtained by treatment of 6-(2-methoxyaryl)-3-alkoxycarbonylhex-3-en-5-ynoic acids with acetic anhydride in the presence of sodium acetate. The latter acids are prepared from the easily available substituted o-iodo-anisoles by Sonogashira coupling with propargylic alcohol and Wittig reaction as the key steps. The described benzannulation reaction proceeds in regioselective fashion and a range of sub­stituents are tolerated. Its synthetic utility is demonstrated by a new synthesis of cannabifuran, a naturally occurring dibenzofuran.

    References

  • 1a Tanahashi T. Takenaka Y. Nagakura N. Hamada N. Phytochemistry  2001,  58:  1129 
  • 1b Miyagawa H. Yamashita M. Ueno T. Hamada N. Phytochemistry  1997,  46:  1289 
  • 1c Harborne JB. Nat. Prod. Rep.  1997,  14:  83 
  • 1d Elix JA. Naidu R. Laundon JR. Aust. J. Chem.  1994,  47:  703 
  • 1e Huneck S. Elix JA. Naidu R. Follmann G. Aust. J. Chem.  1993,  46:  407 
  • 1f Chester DO. Elix JA. Aust. J. Chem.  1981,  34:  1501 
  • 1g El Sohly MA. Slatkin DJ. Knapp JE. Doorenbos NJ. Quimby MW. Schiff PL. Gopalakrishna EM. Watson WH. Tetrahedron  1977,  33:  1711 
  • 1h Friedrich-Fiechtl J. Spiteller G. Tetrahedron  1975,  31:  479 
  • 2a Dean FM. Sargent MV. In Comprehensive Heterocyclic Chemistry   Part 3, Vol. 4:  Bird CW. Cheeseman GWH. Pergamon Press; New York: 1984.  p.531 
  • 2b Bird CW. Cheeseman GWH. In Comprehensive Heterocyclic Chemistry   Part 3, Vol. 4:  Bird CW. Cheeseman GWH. Pergamon Press; New York: 1984.  p.89 
  • 2c Benassi R. In Comprehensive Heterocyclic Chemistry II   Vol. 2:  Katritzky AR. Rees CW. Scriven EFV. Pergamon Press; New York: 1996.  p.259 
  • 2d Heaney H. Ahn JS. In Comprehensive Heterocyclic Chemistry II   Vol. 2:  Katritzky AR. Rees CW. Scriven EFV. Pergamon Press; New York: 1996.  p.297 
  • 2e Friedrichsen W. In Comprehensive Heterocyclic Chemistry II   Vol. 2:  Katritzky AR. Rees CW. Scriven EFV. Pergamon Press; New York: 1996.  p.351 
  • 2f Keay BA. Dibble PW. In Comprehensive Heterocyclic Chemistry II   Vol. 2:  Katritzky AR. Rees CW. Scriven EFV. Pergamon Press; New York: 1996.  p.395 
  • 3a Carvalho CF. Sargent MV. J. Chem. Soc., Perkin Trans. 1  1984,  1621 
  • 3b Carvalho CF. Sargent MV. J. Chem. Soc., Perkin Trans. 1  1984,  1613 
  • 3c Åkermark B. Eberson L. Jonsson E. Pettersson E. J. Org. Chem.  1975,  40:  1365 
  • 4a Arienti A. Bigi F. Maggi R. Moggi P. Rastelli M. Sartori G. Trerè A. J. Chem. Soc., Perkin Trans. 1  1997,  1391 
  • 4b Yamato T. Hideshima C. Prakash GKS. Olah GA. J. Org. Chem.  1991,  56:  3192 
  • 4c Novák J. Salemink CA. Tetrahedron Lett.  1983,  24:  101 
  • 4d Novák J. Salemink CA. J. Chem. Soc., Perkin Trans. 1  1983,  2873 
  • 5a Jean F. Melnyk O. Tartar A. Tetrahedron Lett.  1995,  36:  7657 
  • 5b Tye H. Eldred C. Wills M. Synlett  1995,  770 
  • 6a Katritzky AR. Fali CN. Li J. J. Org. Chem.  1997,  62:  8205 
  • 6b Sha C.-K. Lee R.-S. Tetrahedron  1995,  51:  193 
  • 6c Iwasaki M. Kobayashi Y. Li J.-P. Matsuzaka H. Ishii Y. Hidai M. J. Org. Chem.  1991,  56:  1922 
  • 6d Carvalho CF. Sargent MV. J. Chem. Soc., Perkin Trans. 1  1984,  1605 
  • 6e Scannell RT. Stevenson R. J. Chem. Soc., Perkin Trans. 1  1983,  2927 
  • 6f Scannell RT. Stevenson R. J. Chem. Res., Synop.  1983,  319 
  • 6g Sargent MV. Stransky PO. J. Chem. Soc., Perkin Trans. 1  1982,  1605 
  • 6h Fujiwara Y. Maruyama O. Yoshidomi M. Taniguchi H. J. Org. Chem.  1981,  46:  851 
  • 7 Serra S. Fuganti C. Moro A. J. Org. Chem.  2001,  66:  7883 ; and references cited therein
  • 8 Serra S. Fuganti C. Synlett  2002,  1661 
  • 2-Iodoanisole 5a is commercially available. The substituted 2-iodoanisoles 5b, 5c and 5e were prepared from 1,4-dimethoxy-3-methylbenzene, p-nitroanisole and hydroquinone dimethyl ether, respectively by halogenation according to the following references:
  • 9a Lucht BL. Mao SSH. Tilley TD. J. Am. Chem. Soc.  1998,  120:  4354 
  • 9b Robinson GM. J. Chem. Soc.  1916,  109:  1078 
  • 9c Wariishi K. Morishima S.-I. Inagaki Y. Org. Proc. Res. Dev.  2003,  7:  98 ; respectively
  • 9d The substituted 2-iodoanisoles 5d and 5f were prepared from p-hydroxybenzoic acid and β-naphthol respectively, by halogenation followed by methylation with Me2SO4/K2CO3 in dry acetone. The above mentioned halogenation reaction was performed according to: Edgar KJ. Falling SN. J. Org. Chem.  1990,  55:  5287 
  • 10a Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett.  1975,  4467 
  • 10b

    The coupling reaction was performed in THF solution using 2 equiv of propargyl alcohol, Et3N as base and an equimolar amount of copper and palladium catalysts (0.01 equiv). When the coupling reaction was performed with diiodoanisole 5e, only 1 equiv of propargyl alcohol was used in the preparation.

  • 11 For the preparation of this ylide see: Hudson RF. Chopard PA. Helv. Chim. Acta  1963,  46:  2178 
  • The Wittig reaction of ylide 8 with the aldehydes affords the 3-E-alkylidene-succinic acid monoalkyl esters in a highly stereoselective way; for previous studies on this reaction see:
  • 12a Paquette LA. Schulze MM. Bolin D. J. Org. Chem.  1994,  59:  2043 
  • 12b Röder E. Krauss H. Liebigs Ann. Chem.  1992,  177 
  • 14 Jorapur VS. Duffley RP. Razdan RK. Synth. Commun.  1984,  14:  203 
  • 15 Duff JC. J. Chem. Soc.  1941,  547 
  • 16 Corey EJ. Fuchs PL. Tetrahedron Lett.  1972,  3769 
  • 18 Becker H.-D. Björk A. Adler E. J. Org. Chem.  1980,  45:  1596 
13

Acids 9a-f (50 mmol) were dissolved in acetic anhydride (48 mL, 0.5 mol). To this solution, anhyd sodium acetate (8.2 g, 0.1 mol) and hydroquinone (275 mg, 2.5 mmol) were added in one portion. The obtained heterogeneous mixture was heated at reflux for 1 h under a nitrogen atmosphere. After cooling to r.t., the acetic anhydride was removed in vacuo and the residue was treated with ethyl acetate (250 mL) and water (100 mL). The organic phase was separated, dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by chromatography and crystallization to give phenol derivatives 4a-f.

17

All new compounds were fully characterized. Selected analytical data:
12: Anal. Calcd for C14H18O2: C, 77.03; H, 8.31. Found: C, 77.15; H, 8.35. Bp 150 °C/0.5 mmHg. 1H NMR (250 MHz, CDCl3): δ = 1.22 (6 H, d, J = 6.9 Hz), 2.23 (3 H, s), 2.50-2.85 (1 H, bs), 3.38 (1 H, m), 3.86 (3 H, s), 4.58 (2 H, s), 6.93 (1 H, d, J = 8.0 Hz), 7.10 (1 H, d, J = 8.0 Hz). EI-MS: m/z = 219 (M+ + 1), 218 (M+), 203, 187, 172, 159, 141, 128, 115, 105, 91, 77. FT-IR (film): ν = 813, 1029, 1077, 1237, 1273, 1405, 1459, 1481, 1571, 2225, 2929, 3407 cm-1.
13: Anal. Calcd for C20H24O5: C, 69.75; H, 7.02. Found: C, 69.60; H, 7.10. Mp 59-60 °C (hexane). 1H NMR (250 MHz, CDCl3): δ = 1.22 (6 H, d, J = 6.9 Hz), 1.31 (3 H, t, J = 7.1 Hz), 2.24 (3 H, s), 3.34 (1 H, m), 3.77 (2 H, s), 3.83 (3 H, s), 4.26 (2 H, q, J = 7.1 Hz), 6.95 (1 H, d, J = 8.0 Hz), 7.15 (1 H, d, J = 8.0 Hz), 7.15 (1 H, s). EI-MS: m/z = 345 (M+ + 1), 344 (M+), 316, 300, 285, 270, 255, 239, 225, 209, 195, 173, 165, 152, 128, 115, 97. FT-IR (nujol): ν = 762, 1031, 1093, 1212, 1265, 1376, 1459, 1619, 1699, 1719, 2193 cm-1.
14: Anal. Calcd for C21H22O5: C, 71.17; H, 6.26. Found: C, 71.10; H, 6.25. Mp 113-114 °C (isopropyl ether). 1H NMR (250 MHz, CDCl3): δ = 1.36 (6 H, d, J = 6.9 Hz), 1.42 (3 H, t, J = 7.2 Hz), 2.45 (3 H, s), 2.54 (3 H, s), 3.99 (1 H, m), 4.42 (2 H, q, J = 7.2 Hz), 7.19 (1 H, d, J = 7.7 Hz), 7.30 (1 H, d, J = 7.7 Hz), 7.75 (1 H, d, J = 1.2 Hz), 8.16 (1 H, d, J = 1.2 Hz). EI-MS: m/z = 355 (M+ + 1), 354 (M+), 312, 297, 283, 267, 255, 239, 224, 205, 195, 178, 165, 152, 139, 128, 115, 102, 89. FT-IR(nujol): ν = 770, 1065, 1195, 1229, 1310, 1368, 1411, 1463, 1510, 1571, 1712, 1771 cm-1.
Cannabifuran 15: Anal. Calcd for C21H26O2: C, 81.25; H, 8.44. Found: C, 81.00; H, 8.45. Mp 79-80 °C (hexane). 1H NMR (250 MHz, CDCl3): δ = 0.89 (3 H, t, J = 6.6 Hz), 1.34 (6 H, d, J = 6.8 Hz), 1.20-1.46 (4 H, m), 1.55-1.81 (2 H, m), 2.53 (3 H, s), 2.66 (2 H, t, J = 7.5 Hz), 4.41 (1 H, m), 5.55
(1 H, bs), 6.46 (1 H, s), 7.01 (1 H, s), 7.17 (2 H, m). EI-MS: m/z = 311 (M+ + 1), 310 (M+), 295, 281, 267, 254, 238, 225, 211, 191, 178, 165, 152, 139, 119, 105, 89. FT-IR (nujol):
ν = 760, 815, 1048, 1061, 1219, 1252, 1426, 1514, 1588, 1618, 1635, 3500 cm-1.