Zusammenfassung
Inzwischen sind die verantwortlichen Gene für fünf verschiedene Formen von monogenen
idiopathischen Epilepsien identifiziert worden. Bei vier dieser Syndrome kodieren
die gefundenen Gene Untereinheiten von Ionenkanälen bzw. von damit assoziierten Rezeptoren.
Bei einer autosomal-dominanten Form der Temporallappenepilepsie wurden nun aber Mutationen
im Gen für das leucine-rich-glioma-inactivated-proteine beschrieben, das nichts mit
dem Ionentransport durch Zellmembranen zu tun haben dürfte. Somit sind diese Epilepsien
nicht sämtlich Ionenkanalkrankheiten. Die Erkenntnisse über diese Syndrome stellen
auch die in den Klassifikationssystemen der ILAE verwendeten Dichotomien fokal/generalisiert
und idiopathisch/symptomatisch infrage, da bei einzelnen Syndromen fokale und generalisierte
Anfälle nebeneinander auftreten und auch andere paroxysmale, nichtepileptische Symptome
bzw. eine mentale Retardierung vorkommen können. Bei den häufigeren oligogenen idiopathischen
Epilepsien sind indes bis jetzt noch keine Gene identifiziert worden, die vermuteten
Genloci sind aber von denen der monogenen Formen verschieden. Bei den chromosomalen
Aberrationen mit markantem epileptologischen Phänotyp hofft man ebenfalls, Epilepsiegene
identifizieren zu können. Die hier involvierten Chromsomenabschnitte beinhalten aber
nicht die Genloki monogener und auch nicht die oligogener Epilepsien. Neben Mutationen
in Epilepsiegenen, die unmittelbar epileptogen sind, können aber auch Mutationen in
zahlreichen anderen, höchst unterschiedlichen Genen mittelbar über Hirnentwicklungsstörungen,
Neurodegeneration, gestörten Bau- und Energiestoffwechsel zu epileptischen Anfällen
führen. Auch wenn die Beziehungen zwischen Genom und Proteom bzw. Phänotyp bis jetzt
hier nur wenig verstanden sind, liefert der aktuelle Erkenntnisstand bei einzelnen
Syndromen bereits Ansätze, mit einer Therapie nicht nur Symptome wie epileptische
Anfälle zu bessern, sondern in die Syndromentwicklung selbst einzugreifen. Die genetische
Forschung identifiziert hierbei pathogenetische Kaskaden, die auch bei erworbenen
Erkrankungen eine Rolle spielen können. Schließlich werden auch die genetischen Determinanten
und damit die Voraussagbarkeit von erwünschten und unerwünschten Wirkungen von Antiepileptika
zunehmend untersucht (Pharmakogenetik.)
Abstract
In five idiopathic monogenic epilepsies responsible genes have been identified during
the last decade. In 4 of these syndromes the genes code subunits of ion channels or
associated receptors. In an autosomal dominant variant of temporal lobe epilepsy,
however, mutations have been identified in the gene for the leucin-rich-glioma-inactivated-proteine.
This protein seems not to be involved in the transport of ions through cellular membranes.
Thus, not all of these epilepsies are channnelopathies. The knowledge concerning these
syndromes challenges the dichotomic categories focal/generalised and idiopathic/symptomatic
of the ILAE classification systems, since focal and generalised seizures can occur
beside each other within one syndrome and some of these syndromes comprise other paroxysmal,
non-epileptic symptoms or mental retardation, respectively. In the more common oligogenic
idiopathic epilepsies, however, no genes have been identified so far. The assumed
gene loci are different from those comprising the epilepsy genes in monogenic forms.
Chromosomal aberrations with an outstanding epileptological phenotype may also offer
the opportunity to identify epilepsy genes, i. e. genes which are directly involved
in epileptogenesis. But the deleted, duplicated or triplicated parts of chromosomes
do not contain the known gene loci of monogenic and oligogenic epilepsies. Beside
mutations of epilepsy genes mutations in many other genes can cause epileptic seizures
more indirectly by disturbances of brain development, neurodegeneration or metabolism.
Although the complex relationship between genome on one and proteome and phenotype
on the other side is only understood to a very little extent, the present knowledge
concerning certain syndromes enables first ideas how to go beyond treatment of seizures
suppressing progression of the underlying disease. Genetics can identify pathogenetic
cascades which may be also used by acquired diseases. Finally, pharmacogenomics may
allow us to predict efficacy and tolerability of antiepileptic drugs.
Literatur
- 1
Dorn T, Krämer G.
Genetik der Epilepsien 1998.
Akt Neurol.
1998;
25
169-178
- 2
Steinlein O.
Genetik und Epilepsie.
Z Epileptol.
2001;
14
99-100
- 3
Neubauer B A, Sander T Z.
Idiopathische Epilepsien mit komplexem Vererbungsmuster.
Z Epileptol.
2001;
14
109-114
- 4 Sander T.
Epilepsien. In: Rieß O (Hrsg) Neurogenetik. Heidelberg; Springer 1998: 119-134
- 5 Waterhouse E, Delorenzo R J. In: Shorvon S, Dreifuss F, Fish D et al (eds): The
Treatment of Epilepsy. London; Blackwell Science 1996: 123-137
- 6
Rundfeldt C, Netzer R.
The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells
tranfected with human KCNQ2/3 subunits.
Neurosci Lett.
2000;
282
73-76
- 7
Lee W L, Biervert C, Hallmann K. et al .
A KCNQ2 splice site mutation causing benign neonatal convulsions in a Scottish family.
Neuropediatrics.
2000;
31
9-12
- 8
Singh R, Scheffer I E, Crossland K, Berkovic S F.
Generalized epilepsy with febrile seizures plus: a common childhood-onset genetic
epilepsy syndrome.
Ann Neurol.
1999;
45
75-81
- 9
Commission on Classification and Terminology of the International League against Epilepsy
.
Proposal for revised classification of epilepsies and epileptic syndromes.
Epilepsia.
1989;
30
389-399
- 10
Engel J.
A proposed diagnostic scheme for people with epileptic seizures and with epilepsy:
Report of the ILAE Task force on Classification and Terminology.
Epilepsia.
2001;
42
796-803
, Deutsche Übersetzung in
Z Epileptol.
2001;
14
59-68
- 11
Wallace R H, Wang D W, Singh R. et al .
Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel
beta 1 subunit gene SCN1B.
Nat Genet.
1998;
19
366-370
- 12
Escayg A, MacDonald B T, Meisler M H. et al .
Mutations of SCN+A, encoding a neuronal sodium channel, in two families with GEFS+.
Nat Genet.
2000;
24
343-345
- 13
Wallace R H, Marini C, Petrou S. et al .
Mutant GABA(A) receptor gamma 2 subunit in childhood absence epilepsy and febrile
seizures.
Nat Genet.
2001;
28
49-52
- 14
Bertrand D, Picard F, Le Hellard S. et al .
How mutations in the nAChRs can cause ADNFLE epilepsy.
Epilepsia.
2002;
43 (Suppl 5)
112-122
- 15
Scheffer I E, Wallace R, Mulley J C, Berkovic S F.
Clinical and molecular genetics of myoclonic-astatic epilepsy and severe myoclonic
epilepsy in infancy (Dravet syndrome).
Brain Dev.
2001;
23
732-735
- 16
Gérard F, Pereira S, Robaglia-Schlupp A. et al .
Clinical and genetic analysis of a new multigenerational pedigree with GEFS+ (generalized
epilepsy with febrile seizures plus.
Epilepsia.
2002;
43
581-586
- 17
Cossette P, Liu L, Brisebois K. et al .
Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy.
Nat Genet.
2002;
31
184-189
- 18
Kullmann D M.
The neuronal channelopathies.
Brain.
2002;
125
1177-1195
- 19
Kalachikov S, Evgraov O, Ross B. et al .
Mutations in LGI1 cause autosomal dominat partial epilepsy with auditory features.
Nat Genet.
2002;
30
335-341
- 20
Ottman R, Risch N, Hauser W A. et al .
Localization of a gene for partial epilepsy to chromosome 10q.
Nat Genet.
1995;
10
56-60
- 21
Gu W, Brodtkorbn E, Steinlein O K.
LG1 is mutated in familial temporal lobe epilepsy characterized by aphasic seizures.
Ann Neurol.
2002;
52
364-367
- 22
Claes L, Del-Favero J, Ceulemans B. et al .
De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy
of infancy.
Am J Hum Genet.
2001;
68
1327-1332
- 23
Dedek K, Kunath B, Kananura C. et al .
Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2
K+ channel.
Proc Natl Acad Sci USA.
2001;
98
12272-12277
- 24
Joevenceau A, Eunson L H, Spauschus A. et al .
Human epilepsy associated with dysfunction of the brain p/Q-type calcium channel.
Lancet.
2001;
358
801-807
- 25
Holtman M, Opp J, Tokarzewski M, Korn-Merker E.
Human epilepsy, episodic ataxia type 2, and migraine.
Lancet.
2002;
359
170-171
- 26
Zuberi S M, Eunson L H, Spauschus A. et al .
A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates
with episodic ataxia type 1 and sometimes with partial epilepsy.
Brain.
1999;
122
817-825
- 27
Durner M, Zhou G, Fu D. et al .
Evidence for linkage of adolescent-onset idiopathic generalized epilepsies to chromosome
8 and genetic heterogeneity.
Am J Hum Genet.
1999;
64
1411-1419
- 28
Durner M, Keddache M A, Tomasinsi L. et al .
Genome scan of idiopathic generalized epilepsy: evidence for major susceptibility
gene and modifying genes influencing the seizure type.
Ann Neurol.
2001;
49
328-335
- 29
Sander T, Schulz H, Saar K. et al .
Genome search for susceptibility loci of common idiopathic generalised epilepsies.
Hum Mol Genet.
2000;
9
1465-1472
- 30
Singh R, McKinlay Gardner R J, Crossland K M. et al .
Chromosomal abnormalities and epilepsy: a review for clinicians and gene hunters.
Epilepsia.
2002;
43
127-140
- 31
Inoue Y, Fujiwara T, Matsuda K. et al .
Ringchromosome 20 and nonconvulsive status epilepticus: a new epileptic syndrome.
Brain.
1997;
20
939-953
- 32
Dorn T, Krämer G, Sälke-Kellermann R.
Inversion duplication 15 syndrome and epilepsy: the role of GABA-receptor subunit
genes (abstract).
Epilepsia.
2002;
43 (Suppl 8)
132-133
- 33
Dorn T, Riegel M, Schinzel A. et al .
Epilepsy and trisomny 19q - different seizure patterns in a brother and a sister.
Epilepsy Research.
2001;
47
119-126
- 34
Berkovic S F, Cochius J, Andermann E, Andermann F.
Progressive myoclonus epilepsies: clinical and genetic aspects.
Epilepsia.
1993;
34, Suppl 3
S19-S30
- 35
Dhar S, Bitting R L, Rylova S N. et al .
Flupirtine blocks apoptosis in batten patient lymphoblasts and in human postmitotic
CLN3- and CLN2-deficient neurons.
Ann Neurol.
2002;
51
448-466
- 36
Edwards M JJ, Hargreaves I P, Heales S JR. et al .
N-acetylcysteine and Unverricht-Lundborg disease. Variable response and possible side
effects.
Neurology.
2002;
59
1447-1149
- 37
Bonten E, van der Spoel A, Fornerod M. et al .
Characterization of human lysosomal neuraminidase defines the molecular basis of the
metabolic storage disorder sialidosis.
Genes Dev.
1996;
10
3156-3169
- 38
Davis R L, Shrimpton A E, Carrell R W. et al .
Association between conformational mutations in neuroserpin and onset and severity
of dementia.
The Lancet.
2002;
359
2242-2247
- 39
Heilstedt H A, Shahbazian M D, Lee B.
Infantile hypotonia as a presentation of Rett syndrome.
Am J Med Genet.
2002;
111
238-242
- 40
Amir R E, Van den Veyver I B, Wan M. et al .
Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding
protein 2.
Nature Genet.
1999;
23
185-188
- 41
Topcu M, Akyerli C, Sayi A. et al .
Somatic mosaicism for a MECP2 mutation associated with classic Rett syndrome in a
boy.
Europ J Hum Genet.
2002;
10
77-81
- 42
Shahbazian M D, Young J I, Yuva-Paylor L A. et al .
Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation
of histone H3.
Neuron.
2002;
35
243-254
- 43
Fox J W, Lamperti E D, Eksioglu Y Z. et al .
Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular
heterotopia.
Neuron.
1998;
21
1315-1325
- 44
des Portes V, Pinard J M, Billuart P. et al .
A novel CNS gene required for neuronal migration and involved in X-linked subcortical
laminar heterotopia and lissencephaly syndrome.
Cell.
1998;
92
51-61
- 45
Dorn T, Krämer G, Kotzot D, Schinzel A.
Bilateral periventricular nodular heterotopia, epilepsy and cerebellar cysts with
autosomal dominant inheritance? (abstract).
Epilepsia.
2001;
42 (Suppl 2)
15
- 46
Pilz D T, Kuc J, Matsumoto N. et al .
Subcortical band heterotopia in rare affected males can be caused by missense mutations
in DCX (XLIS) or LIS1.
Hum Molec Genet.
1999;
8
1757-1760
- 47
Kato M, Kanai M, Soma O. et al .
Mutation of the doublecortin gene in male patients with double cortex syndrome: somatic
mosaicism detected by hair root analysis.
Ann Neurol.
2001;
50
547-551
- 48
Sheen V L, Dixon P H, Fox J W. et al .
Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia
in males as well as in females.
Hum Molec Genet.
2001;
10
1775-1783
- 49 Scriver C R, Valle D, Beaudet A L. et al .Metabolic and Molecular Bases of Inherited
Disease, 8th edition. New York; McGraw-Hill 2001
- 50
Nissenkorn A, Michelson M, Ben-Zeev B, Lerman-Sagie T.
Inborn errors of metabolism. A cause of abnormal brain development.
Neurology.
2001;
56
1265-1272
- 51
Bizzi A, Bugiani M, Salomons G S. et al .
X-linked creatine deficiency syndrome: a novel mutation in creatine transporter gene
SLC6A8.
Ann Neurol.
2002;
52
227-231
- 52
Dorn T.
Mitochondriale Zytopathien.
Schweiz Arch Neurol Psych.
2001;
4
195-202
- 53
Mouradian M M.
Recent advances in the genetics and pathogenesis of Parkinson disease.
Neurology.
2002;
58
179-185
- 54
Stogmann E, Zimprich A, Baumgartner C. et al .
A functional polymorphism in the prodynorphin gene promotor is associated with temporal
lobe epilepsy.
Ann Neurol.
2002;
51
260-263
- 55
Tang Y, Lu A, Aronow B J, Sharp F R.
Blood genomic responses differ after stroke, seizures, hypoglycemia, and hypoxia:
blood genomic fingerprints of disease.
Ann Neurol.
2001;
50
699-707
- 56
Ortells M O, Barrantes G E.
Molecular modelling of the interactions of carbamazepine and a nicotinic receptor
involved in the autosomal dominant nocturnal frontal lobe epilepsy.
Br J Pharmacol.
2002;
136
883-895
- 57
Ito M, Kobayashi K, Fujii T. et al .
Electroclinical picture of autosomal dominant nocturnal frontal lobe epilepsy in a
Japanese family.
Epilepsia.
2000;
41
52-58
- 58
Potschka H, Fedrowitz M, Löscher W.
P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the
blood-brain barrier: evidence from microdialysis experiments in rats.
Neurosci Lett.
2002;
327
173-176
- 59
Wang P W, Ketter T A.
Pharmacokinetics of mood stabilizers and new anticonvulsants.
Psychopharmacol Bull.
2002;
36
44-66
- 60
Holmes G L.
The interface of preclinical evaluation with clinical testing of antiepileptic drugs:
role of pharmacogenomics and pharmacogenetics.
Epilepsy Res.
2002;
50
41-54
- 61 Haug K, Warnstedt M, Alekov A K. et al .Mutations in CLCN2 encoding a voltage-gated
chloride channel are associated with idiopathic generalized epilepsies. Nat Genet
2003 [epub ahead of print]
Dr. med. T. Dorn
Schweizerisches Epilepsie-Zentrum
Bleulerstraße 60
8008 Zürich · Schweiz