Zusammenfassung
Das Immunsystem muss im Bereich des Darmes besonders subtil zwischen Freund (Nahrung)
und Feind (Erregern/Tumorzellen) unterscheiden. Besonders im Bereich des Kolons und
Rektums sind durch die notwendige Symbiose mit (E. coli-)Keimen und durch die hohe
Belastung mit Schadstoffen hochentwickelte und robuste Immunfunktionen erforderlich.
So verwundert es nicht, dass besonders spezifische Immunfunktionen bei spontanen Wechselwirkungen
zwischen kolorektalen Tumorzellen und Immunsystem eine z. T. lebenswichtige Rolle
spielen können. Auch immuntherapeutische Ansätze für das kolorektale Karzinom beziehen
vor allem das spezifische Immunsystem ein. So finden sich antisuppressive Immuntherapien,
die vor allem gegen Blockaden und Suppressionen des spezifischen Immunsystems gerichtet
sind. Auch aktive unspezifische Immuntherapien wie der Einsatz von Levamisol wirken
letztlich über die Begünstigung von spezifischen Immunfunktionen. Die moderne Immuntherapieforschung
sucht mit aktiv spezifischen Immuntherapien, also mit Tumorimpfstoffen, den Durchbruch.
Zahlreiche Tumorantigene und tumorassoziierte Antigene sind bereits als potenzielle
Ziele solcher Therapien identifiziert worden. Sie werden in Vakzinierungsstudien,
seltener in passiven spezifischen Immuntherapieansätzen mit (monoklonalen) Antikörpern
und adoptiven Immunzelltransfers auf ihre therapeutische Nutzbarkeit geprüft. Bisher
kommen die Ergebnisse noch nicht an Daten aus (z. T. randomisierten) Studien zur Tumorvakzinierung
mit autologem (patienteigenem) Tumormaterial heran. Autologe Tumorimpfstoffe sind
zwar in Herstellung und Qualitätssicherung aufwändiger als Impfstoffe, die aus synthetischem
oder fremdem (allogenen) Material hergestellt werden. Aber der Vorteil der perfekten
Übereinstimmung des Antigencocktails aus der Vakzine mit dem Antigenmuster auf den
zu behandelnden Tumormetastasen überwiegt. Zukunftweisend scheinen neue Impfstoffgenerationen,
die zur Verbesserung von Antigenität und Immunogenität allogener oder autologer Tumorantigene
dendritische Zellen verwenden. Einige dieser Impfstoff sind zwar prinzipiell zur klinischen
Routineanwendung verfügbar, das Evidenzniveau für die Wirksamkeit, Kosten und Patientenselektion
setzen dem Einsatz jedoch noch Grenzen.
Abstract
The immune system around the bowel has to decide between friend (food) and enemy (pathegens/tumorcells)
in a very subtle manner. Especially in the area of colon and rectum there is a strong
need for highly sophisticated and reliable immune functions because of the symbiosis
with potential pathogens (E. coli) and the presence of high concentrations of toxic
chemicals. Consequently it is not surprising that the specific immune functions play
a major and sometimes vital part within spontaneous interactions between colorectal
tumor cells and the immune system. In the same way immunotherapeutic strategies for
colorectal cancer center around the specific immune system. There are for example
antisuppressive approaches antagonizing blocking and suppressive influences on the
specific immune functions. Also active non-specific immunotherapy like levamisol application
seems to act mainly via an indirec support of specific immune cells. Modern strategies
in search for a break through are centred around active specific immunotherapies with
tumor vaccines. Many tumor antigens and tumor associated antigens have been identified
as possible targets for specific immune resonses. They are currently evaluated in
vaccine studies, or though less often in passive specific therapies with (monoclonal)
antibodies or adoptive immune cell transfer. However, up to now the results cannot
compete with results from (randomized) clinical studies using vaccines from autologous
(i.e. patients own) tumor material. Autologous tumor vaccines are on one hand more
difficult to handle with respect to pharmaceutical production standards and quality
control than vaccines made from synthetic or foreign (allogenous) tumor material.
On the other hand the advantage of a perfect match between the antigen cocktail of
the vaccine and the antigenic constellation in the metastases to be treated still
dominates. Future developements introduce the use of dendritic cells as multiplier
for antigenicity and immunogenicity of allogenous or autologous tumor materials. Some
of these vaccine generations are basically available in clinical routine although
the evidence level for effectivity, the cost and the patient selection put yet limits
to their use.
Schlüsselwörter
Kolorektales Karzinom - Tumorvakzine - Tumorimpfung - Tumorvakzinierung Immunität
- klinische Studie - spezifische Immuntherapie - Immunmechanismus - Tumorbiologie
Key words
Colorectal cancer - tumor vaccine - tumor vaccination - immunity - clinical study
- specific immunotherapy - immune mechanism - tumor biology
Literatur
- 1
Menon A, Fleuren G, Alphenaar E, Jonges L, Janssen van Rhijn C, Ensink N. et al .
A Basal Membrane-Like Structure Surrounding Tumour Nodules May Prevent Entraepithelial
Leucocyte Infiltration in Colorectal Cancer.
Cancer Immunol Immunother.
2003;
52
(2)
121-126
- 2
Murphy J, O'Sullivan G, Lee G, Madden M, Shanahan F, Collings J. et al .
The Inflammatory Response Within Dukes' B Colorectal Cancers: Implications for Progression
of Micrometastases and Patient Survival.
Am J Gastroenterol.
2001;
96
(9)
2794-2795
- 3
Huang A, Quinn H, Glover C, Henderson D, Allen-Mersh T.
The Presence of Interleukin-2 Receptor Alpha ina the Serum of Colorectal Cancer Patients
is Unlikely to Result Only from T Cell Up-Regulation.
Cancer Immunol Immunother.
2002;
51
(1)
53-57
- 4
Vita F De, Romano C, Orditura M, Galizia G, Martinelli E, Lieto E. et al .
Interleukin-6 Serum Level Correlates with Survival in Advanced Gastrointestinal Cancer
Patients but is not an Independent Prognostic Indicator.
J Interferon Cytokine Res.
2001;
21
(1)
45-52
- 5
Schwab T, Weiss J, Schned A, Barth R.
Dendritic Cell Infiltration in Colon Cancer.
J Immunother.
2001;
24
(2)
130-137
- 6
Nagtegaal I, Marijnen C, Kranenbarg E, Mullder-Stapel A, Hermans J, Velde C van de.
et al .
Local and Distant Recurrences in Rectal Cancer Patients are Predicted by the Nonspecific
Immune Response; Specific Immune Response has Only a Systemic Effect - a Histopathological
and Immunohistochemical Study.
BMC Cancer.
2003;
1
(1)
7
- 7
Albanopoulos K, Armakolas A, Konstadoulakis M, Leandros E, Tsiobanou D, Katsaragakis S.
et al .
Prognostic Significance of Circulating Antibodies Against Carcinoembryonic Antigen
(Anti-CEA) in Patients with Colon Cancer.
Am J Gastroenterol.
2000;
95
(4)
1056-1061
- 8
Coley W.
The treatment of malignant tumors by repeated inoculations of erysipelas: with a report
of ten original cases.
Am J Med Sci.
1893;
105
487-511
- 9
Parish C.
Cancer immunotherapy: The past, the present and the future.
Immunol Cell Biol.
2003;
81
(2)
106-113
- 10
Brivio F, Lissoni P, Perego M, Lissoni A, Fumagalli L.
Abrogation of surgery-induced IL-6 hypersecretion by presurgical immunotherapy with
IL-2 and its importance in the prevention of postoperative complications.
J Biol Regul Homeost Agents.
2001;
15
(4)
370-374
- 11
Kojima M, Morisaki T, Uchiyama A, Doi F, Mibu R, Katano M. et al .
Association of enhanced cyclooxygenase-2 expression with possible local immunosuppression
in human colorectal carcinomas.
Ann Surg Oncol.
2001;
8
(5)
458-465
- 12
Isenberg J, Stoffel B, Wolters U, Beuth J, Stützer H, Ko H. et al .
Immunostimulation by Propionibacteria - Effects on Immune Status and Antineoplastic
Treatment.
Anticancer Research.
1995;
15
2363-2368
- 13
Kelly M, King J, Cherian M, Dwerryhouse J, Finlay I, Adams W. et al .
Randomized trial of preoperative cimetidine in patients with colorectal carcinoma
with quantitative assessment of tumor-associated lymphocytes.
Cancer.
1999;
85
(8)
1658-1663
- 14
Czeto C, Gillespie K, Mathison G.
Levamisol Induces Interleukin-18 and Shifts Type1/Type 2 Cytokine Balance.
Immunology.
2000;
100
217-224
- 15
Parsad D, Saini R, Negi K.
Comparison of Cimetidin and Levamisol with Cimetidin Alone in the Treatment of Recalcitrant
Warts.
Austr J Dermatol.
1999;
40
93-95
- 16
Kayatas M.
Levamisol Treatment Enhances Protective Antibody Response to Hepatitis B Vaccination
in Hemodialysis Patients.
Artificial Organs.
2002;
26
(6)
492-496
- 17
Shono Y, Tanimura H, Iwahashi M, Tsunoda T, Tani M, Tanaka H. et al .
Specific T-Cell Immunity Against Ki-Ras Peptides in Patients with Pancreatic and Colorectal
Cancers.
Br J Cancer.
2003;
88
(4)
530-536
- 18
Kobayashi H, Omiya R, Ruiz M, Huarte E, Sarobe P, Lasarte J. et al .
Identification of an Antigenic Epitope for Helper T Lymphocytes from Carcinoembryonic
Antigen.
Clin Cancer Res.
2002;
8
(10)
3219-3225
- 19
Moulton H, Yoshihara P, Mason D, Iversen P, Triozzi P.
Active specific immunotherapy with metastatic colorectal cancer: antibody response
is associated with improved survival.
Clin Cancer Res.
2002;
8
(7)
2044-2051
- 20
Frodin J, Fagerberg J, Hjelm Skog A, Liljefors M, Ragnhammar P, Mellstedt H.
MAb17-1A and Cytokines for the Treatment of Patients with Colorectal Carcinoma.
Hybrid Hybridomics.
2002;
21
(2)
99-101
- 21
Mosolits S, Seinitz M, Harmenberg U, Rudden U, Eriksson E, Mellstedt H. et al .
Immunogenic Regions of the GA733-2 Tumour-Associated Antigen Recognised by Autoantibodies
of Patients with Colorectal Carcinoma.
Cancer Immunol Immunother.
2002;
51
(4)
209-218
- 22
Burg S van der, Menon G, Redeker A, Bonnet M, Drifjhout J, Tollenaar R. et al .
Induction of P53-Specific Immune Responses in Colorectal Cancer Patients Receiving
a Recombinant ALVAC-P53 Candidate Vaccine.
Clin Cancer Res.
2002;
8
(5)
1019-1027
- 23
Sasatomi T, Suefuji Y, Matsunaga K, Yamana H, Meyagi Y, Araki Y. et al .
Expression of Tumor Rejection Antigens in Colorectal Carcinomas.
Cancer.
2002;
94
(6)
1636-1641
- 24
Perez S, Sotiropoulou P, Sotiriadou N, Mamalaki A, Gritzapis A, Echner H. et al .
HER-2/Neu-Derived Peptide 884-899 is Expressed by Human Breast, Colorectal and Pancreatic
Adenocarcinomas and is Recognized by in-Vitro-Induced Specific CD4(+) T Cell Clones.
Cancer Immunol Immunother.
2002;
50
(11)
615-624
- 25
Disis M, Schmiffman K.
Cancer Vaccines Targeting the HER2/Neu Oncogenic Protein.
Semin Oncol.
2001;
28
(6 Suppl 18)
12-20
- 26
Durrant L, Spendlove I.
Immunization Against Tumor Cell Surface Complement-Regulatory Proteins.
Curr Opin Investig Drugs.
2001;
2
(7)
959-966
- 27
Baldus S, Zierbes T, Hanisch F, Kunze D, Shafizadeh S, Nolden S. et al .
Thomsen-Freidenreich Antigen Presents as a Prognostic Factor in Colorectal Carcinoma:
A Clinicopathologic Study of 264 Patients.
Cancer.
2000;
88
(7)
1536-1543
- 28
Hoover H, Brandhorst J, Peters L, Surdyke M, Takeshita Y, Madariaga J. et al .
Adjuvant Active Specific Immunotherapy for Human Colorectal Cancer: 6.5-Year Median
Follow-Up of a Phase III Prospectively Randomized Trial.
J Clinical Oncology.
1993;
11
390-399
- 29
Ockert D, Schirrmacher V, Beck N, Stoelben E, Ahlert T, Flechtenmacher J. et al .
Newcastle Disease Virus infected intact autologous tumor cell vaccine for adjuvant
active specific immunotherapy of resected colorectal carcinoma.
Clin Cancer Res.
1996;
2
(1)
21-28
- 30
Schirrmacher V, Haas C, Bonifer R, Ahlert T, Gerhards R, Ertel C.
Human Tumor Cell Modification by Virus Infection: an Efficient and Safe Way to Produce
Cancer Vaccine with Pleiotropic Immune Stimulatory Properties when Using Newcastle
Disease Virus.
Gene therapy.
1999;
6
63-73
- 31
Liang W, Wang H, Sun T, Yao W, Chen L, Jin Y. et al .
Application of autologous tumor cell vaccine and NDV vaccine in treatment of digestive
tract.
World J Gastroenterol.
2003;
9
(3)
495-498
- 32
Harris J, Ryan L, Hoover H, Stuart R, Oken M, Benson A. et al .
Adjuvant active specific immunotherapy for stage II and III colon cancer with autologous
tumor cell vaccine. Eastern Cooperative Oncology Group Study E5283.
J Clin Oncol.
2000;
18
(1)
148-157
- 33
Vermorken J, Claessen A, Tinteren H van, Gall H, Ezinga R, Meijer S. et al .
Active specific immunotherapy for stage II and stage III Human colon cancer: a randomized
controlled trial.
Lancet.
1999;
353
(9150)
345-350
- 34
Habal N, Gupta R, Bilchik A, Yee R, Leopoldo Z, Ye W. et al .
CancerVax, an allogeneic tumor cell vaccine, induces specific humoral and cellular
immune responses in advanced colon cancer.
Ann Surg Oncol.
2001;
8
(5)
389-401
- 35
Rains N, Cannan R, Chen W, Stubbs R.
Development of a dendritic cell (DC)-based vaccine for patients with advanced colorectal
cancer.
Hepatogastroenterology.
2001;
48
(38)
347-351
PD Dr. med. Peter Sterk
Klinik für Chirurgie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
Ratzeburger Allee 160
23538 Lübeck
Telefon: + 0451/500-2001
Fax: + 0451/500-2069
eMail: post@sterk-medic.de