References
For reviews on the palladium-catalysedSuzuki cross-coupling reactions see:
<A NAME="RG11903ST-1A">1a</A>
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
<A NAME="RG11903ST-1B">1b</A>
Suzuki A.
J.Organomet. Chem.
1999,
576:
147
<A NAME="RG11903ST-1C">1c</A>
Suzuki A.
J.Organomet. Chem.
2002,
653:
83
<A NAME="RG11903ST-1D">1d</A>
Littke AF.
Fu GC.
Angew.Chem. Int. Ed.
2002,
41:
4176
<A NAME="RG11903ST-2A">2a</A>
Beller M.
Fischer H.
Herrmann WA.
Öfele K.
Brossmer C.
Angew.Chem., Int. Ed. Engl.
1995,
34:
1848
<A NAME="RG11903ST-2B">2b</A>
Albisson DA.
Bedford RB.
Lawrence SE.
Scully PN.
Chem.Commun.
1998,
2095
<A NAME="RG11903ST-2C">2c</A>
Weissman H.
Milstein D.
Chem. Commun.
1999,
1901
<A NAME="RG11903ST-2D">2d</A>
Wolfe JP.
Buchwald SL.
Angew.Chem., Int. Ed.
1999,
38:
2413
<A NAME="RG11903ST-2E">2e</A>
Wolfe JP.
Singer RA.
Yang BH.
Buchwald SL.
J.Am. Chem. Soc.
1999,
121:
9550
For examples of Suzuki reactionswith benzylic halides:
<A NAME="RG11903ST-3A">3a</A>
Sharp MJ.
Snieckus V.
TetrahedronLett.
1985,
26:
5997
<A NAME="RG11903ST-3B">3b</A>
Pernia GJ.
Kilburn JD.
Essex JW.
Mortishire-Smith RJ.
Rowley M.
J. Am. Chem. Soc.
1996,
118:
10220
<A NAME="RG11903ST-3C">3c</A>
Chowdhury S.
Georghiou PE.
Tetrahedron Lett.
1999,
40:
7599
<A NAME="RG11903ST-3D">3d</A>
Juteau H.
Gareau Y.
Labelle M.
Sturino CF.
Sawyer N.
Tremblay N.
Lamontagne S.
Carrière M.-C.
Denis D.
Metters KM.
Bioorg. Med. Chem.
2001,
9:
1977
<A NAME="RG11903ST-3E">3e</A>
Botella L.
Najera C.
Angew. Chem. Int. Ed.
2002,
41:
179
For examples of Suzuki reactionswith ethyl bromoacetate or cinnamyl bromide derivatives,
see:
<A NAME="RG11903ST-4A">4a</A>
Moreno-Manas M.
Pajuelo F.
Pleixats R.
J.Org. Chem.
1995,
60:
2396
<A NAME="RG11903ST-4B">4b</A>
Cortes J.
Moreno-Manas M.
Pleixats R.
Eur.J. Org. Chem.
2000,
239
<A NAME="RG11903ST-4C">4c</A>
Gooßen LJ.
Chem. Commun.
2001,
669
<A NAME="RG11903ST-4D">4d</A>
Liu X.-X.
Deng M.-Z.
Chem. Commun.
2002,
622
<A NAME="RG11903ST-5">5</A> For examples of coupling of arylboronicacids with allylacetate, see:
Bouyssi D.
Gerusz V.
Balme G.
Eur.J. Org. Chem.
2002,
2445
<A NAME="RG11903ST-6">6</A> For a review on the synthesis ofpolypodal diphenylphosphine ligands, see:
Laurenti D.
Santelli M.
Org. Prep. Proced. Int.
1999,
31:
245
<A NAME="RG11903ST-7">7</A>
Laurenti D.
Feuerstein M.
Pèpe G.
Doucet H.
Santelli M.
J.Org. Chem.
2001,
66:
1633
<A NAME="RG11903ST-8">8</A>
Feuerstein M.
Doucet H.
Santelli M.
J.Org. Chem.
2001,
66:
5923
<A NAME="RG11903ST-9A">9a</A>
Feuerstein M.
Laurenti D.
Bougeant C.
Doucet H.
Santelli M.
Chem. Commun.
2001,
325
<A NAME="RG11903ST-9B">9b</A>
Feuerstein M.
Laurenti D.
Doucet H.
Santelli M.
Synthesis
2001,
2320
<A NAME="RG11903ST-9C">9c</A>
Feuerstein M.
Doucet H.
Santelli M.
Tetrahedron Lett.
2001,
42:
5659
<A NAME="RG11903ST-9D">9d</A>
Feuerstein M.
Doucet H.
Santelli M.
TetrahedronLett.
2001,
42:
6667
<A NAME="RG11903ST-9E">9e</A>
Feuerstein M.
Doucet H.
Santelli M.
Synlett
2001,
1458
<A NAME="RG11903ST-9F">9f</A>
Feuerstein M.
Berthiol F.
Doucet H.
Santelli M.
Synlett
2002,
1807
<A NAME="RG11903ST-9G">9g</A>
Berthiol F.
Doucet H.
Santelli M.
Eur.J. Org. Chem.
2003,
1091
<A NAME="RG11903ST-10">10</A>
As a typical experiment, the reactionof 4-cyanobenzyl bromide (1.00 g, 5.1 mmol),
4-methoxyphenylboronicacid (1.55 g, 10.2 mmol) and K2CO3 (1.4 g,10.2 mmol) at 130 °C during 20 h in anhydrous xylene (10mL) in the presence
of cis,cis,cis-1,2,3,4-tetrakis(diphenylphosphinomethyl) cyclopentane-[PdCl(C3H5)]2 complex(0.0051 mmol) under argon affords the corresponding adduct afterextraction
with ether, evaporation and filtration on silica gel(dichloro-methane) in 81% (0.92
g) isolated yield. 4-(4-Methoxy-phenylmethyl)benzonitrile: 1HNMR (300 MHz, CDCl3): δ = 7.59(d, J = 8.3 Hz, 2 H, Ar), 7.29(d, J = 8.3 Hz, 2 H, Ar), 7.11(d, J = 8.6 Hz, 2 H, Ar), 6.88(d, J = 8.6 Hz, 2 H, Ar), 4.00(s, 2 H, CH2), 3.82 (s, 3 H, OMe).
<A NAME="RG11903ST-11">11</A>
Analytical data of selected products:Table
[1]
(entry11): δ = 7.71 (s, 1 H, Ar), 7.62 (s, 2 H, Ar),7.35-7.10 (m, 5 H, Ph), 4.09 (s,
2 H, CH2);Table
[1]
(entry16): δ = 7.30-7.00 (m, 5 H, Ph), 7.08(m, 1 H, Ar), 6.80 (m, 2 H, Ar), 3.94 (s,
2 H, CH2); C13H10F2 (204.2):calcd. C 76.46, H 4.94; found C 76.62, H 4.71; MS (EI, 70 eV) m/z (%): 204(100) [M+];Table
[1]
(entry 18): δ = 7.25-7.10(m, 3 H, Ph), 7.01 (d, J = 7.2Hz, 2 H, Ph), 6.89 (s, 2 H, Ar), 4.02 (s, 2 H, CH2),2.29 (s, 3 H, Me), 2.20 (s, 6 H, Me); Table
[1]
(entry 25): δ = 9.96(s, 1 H, CHO), 8.14 (d, J = 8.7Hz, 2 H, Ar), 7.85-7.35 (m, 4 H, Ar), 7.33 (d, J = 8.7 Hz, 2 H, Ar), 4.14 (s,2 H, CH2); C14H11NO3 (214.2): calcd.C 69.70, H 4.60; found C 70.01, H 4.72; MS (EI, 70 eV) m/z (%): 241(100) [M+];Table
[1]
(entry26): δ = 8.12 (d, J = 8.7Hz, 2 H, Ar), 7.34 (d, J = 8.7Hz, 2 H, Ar), 7.11 (m, 1 H, Ar), 6.82 (m, 2 H, Ar), 4.03 (s, 2 H,CH2); C13H9F2NO2 (249.2):calcd. C 62.65, H 3.64; found C 62.52, H 3.74; MS (EI, 70 eV) m/z (%): 249(100) [M+];Table
[1]
(entry28): δ = 8.08 (d, J = 8.6Hz, 2 H, Ar), 7.32 (d, J = 8.6Hz, 2 H, Ar), 7.25 (m, 1 H, Ar), 7.09 (d, J = 7.3Hz, 1 H, Ar), 6.89 (m, 2 H, Ar), 4.03 (s, 2 H, CH2),3.77 (s, 3 H, Me); Table
[1]
(entry 35): δ = 7.60(d, J = 7.8 Hz, 2 H, Ar), 7.29(d, J = 7.8 Hz, 2 H, Ar), 7.10(d, J = 8.5 Hz, 2 H, Ar), 6.88(d, J = 8.5 Hz, 2 H, Ar), 4.00(s, 2 H, CH2), 3.82 (s, 3 H, Me); Table
[1]
(entry 39): δ = 7.53(d, J = 7.3 Hz, 2 H, Ar), 7.28(d, J = 7.3 Hz, 2 H, Ar), 7.23(m, 1 H, Ar), 7.07 (d, J = 7.4Hz, 1 H, Ar), 6.87 (m, 2 H, Ar), 4.00 (s, 2 H, CH2),3.78 (s, 3 H, Me); Table
[1]
(entry43): δ = 7.83 (m, 1 H, Ar), 7.79 (s, 1 H, Ar),7.67 (d, J = 7.6 Hz, 1 H, Ar),7.39 (t, J = 7.6 Hz, 1 H, Ar),7.30 (m, 3 H, Ar), 7.20 (d, J = 7.6Hz, 1 H, Ar), 4.31 (s, 2 H, CH2), 3.86 (s, 3 H, Me), 2.46 (s, 3H, Me); C17H16O3 (268.3): calcd.C 76.10, H 6.01; found C 75.87, H 6.21; MS (EI, 70 eV); m/z (%): 268(36) [M+].