Zusammenfassung
Die prächirurgische funktionelle Magnetresonanztomographie (fMRT) bildet motorische
und somatosensible Hirnaktivierung nicht invasiv in Relation zu rolandischen Tumoren
ab und erfasst plastische Veränderungen. Funktionelle Landmarken ermöglichen die Prüfung
der Operationsindikation sowie die Planung und Durchführung funktionsschonender Resektionen,
selbst wenn morphologische Landmarken tumorbedingt nicht mehr identifizierbar sind.
Derzeit kann die fMRT noch nicht als klinisch etabliertes diagnostisches Verfahren
angesehen werden, da praktikable Stimulationssysteme, standardisierte Untersuchungsprotokolle
und für medizinische Anwendungen zugelassene Auswertungsprogramme fehlen. In dieser
Arbeit werden, nach einer kurzen Rekapitulation der funktionellen und bildmorphologischen
Neuroanatomie, die Indikationen zur prächirurgischen fMRT bei Patienten mit rolandischen
Hirntumoren dargestellt. Ein robustes Basisprotokoll erlaubt zuverlässig prächirurgische
fMRT-Untersuchungen während kontralateraler Handbewegungen auf klinischen MR-Tomographen
mit Feldstärken ab 1,0 Tesla. Optimierte Untersuchungsstrategien und praktikable Stimulationsmodalitäten
werden für Patienten mit „handferner” rolandischer Tumorlokalisation, vorbestehenden
sensorimotorischen Defiziten oder mangelnder Kooperationsfähigkeit vorgestellt und
in der Anwendung durch Fallbeispiele veranschaulicht. Möglichkeiten und Grenzen der
klinischen Anwendung werden aufgezeigt und diskutiert.
Abstract
Preoperative functional magnetic resonance imaging (fMRI) localizes the primary motor
and somatosensory cortex in relation to rolandic brain tumors and determines plastic
cortical reorganization. Functional landmarks help to assess the indication for surgery
and to plan for safer surgical procedures that protect the functional cortex during
resection even when morphologic landmarks are no longer identifiable on anatomic images.
Despite its successful application, preoperative fMRI has not yet reached the status
of an established clinical diagnostic procedure since special stimulation systems,
standardized fMRI protocols and medically approved software are still lacking. Following
a brief review of the image display of the functional and morphologic anatomy, the
different indications for preoperative fMRI in patients with rolandic brain tumors
are presented. A robust preoperative protocol enables clinical MR units with magnetic
field strengths of 1.0 Tesla or higher to perform reliable fMRI during contralateral
hand movements. Optimized investigation strategies and stimulation modalities are
proposed for patients with rolandic tumors distant from the cortical hand representation,
for patients with preexisting sensorimotor deficits and for patients with poor compliance.
Representative cases illustrate the clinical application. Possibilities and limitations
of preoperative fMRI are presented and discussed.
Key words
fMRI, clinical application - fMRI, sensorimotor cortex - surgery - brain tumor
Literatur
1
Naidich T P, Valavanis A G, Kubik S.
Anatomic relationships along the low-middle convexity: part I - normal specimens and
magnetic resonance imaging.
Neurosurgery.
1995;
36
517-532
2
Naidich T P, Brightbill T C.
Systems for localizing fronto-parietal gyri and sulci on axial CT and MRI.
Int J Neuroradiol.
1996;
2
313-338
3
Naidich T P, Hof P R, Yousry T A, Yousry I.
The motor cortex: anatomic substrates of function.
Neuroimaging Clin N Am.
2001;
11
171-193
4
Yousry T A, Schmid U D, Schmidt D, Hagen T, Jassoy A, Reiser M F.
The central sulcus vein: a landmark for identification of the central sulcus using
functional magnetic resonance imaging.
J Neurosurg.
1996;
85
608-617
5
Yousry T A, Schmid U D, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P.
Localization of the motor hand area to a knob on the precentral gyrus. A new landmark.
Brain.
1997;
120
141-157
6
Penfield W, Boldrey E.
Somatoic motor and sensory representation in the cerebral cortex of man as studied
by electrical stimulation.
Brain.
1937;
60
389-443
7
Lotze M, Erb M, Flor H, Hülsmann E, Godde B, Grodd W.
fMRI evaluation of somatotopic representation in human primary motor cortex.
Neuroimage.
2000;
11
473-481
8
Rao S M, Binder J R, Hammeke T A, Bandettini P A, Bobholz J A, Frost J A, Myklebust B M,
Jacobson R D, Hyde J S.
Somatotopic mapping of the human primary motor cortex with functional magnetic resonance
imaging.
Neurology.
1995;
45
919-924
9
Stippich C, Hofmann R, Kapfer D, Hempel E, Heiland S, Jansen O, Sartor K.
Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile
stimulation using functional magnetic resonance imaging (fMRI).
Neurosci Lett.
1999;
277
25-28
10
Stippich C, Ochmann H, Sartor K.
Somatotopic mapping of the human primary sensorimotor cortex during motor imagery
and motor execution by functional magnetic resonance imaging (fMRI).
Neurosci Lett.
2002;
331
50-54
11
Wunderlich G, Knorr U, Herzog H. et al .
Precentral glioma location determines the displacement of cortical hand representation.
Neurosurgery.
1998;
42
18-27
12
Fandino J, Kollias S S, Wieser H G, Valavanis A, Yonekawa Y.
Intraoperative validation of functional magnetic resonance imaging and cortical reorganization
patterns in patients with brain tumors involving the primary motor cortex.
J Neurosurg.
1999;
91
238-250
13
Bittar R G, Olivier A, Sadikot A F, Andermann F, Reutens D C.
Cortical motor and somatosensory representation: effect of cerebral lesions.
J Neurosurg.
2000;
92
242-248
14
Carpentier A C, Constable R T, Schlosser M J, de Lotbiniere A, Piepmeier J M, Spencer D D,
Awad I A.
Patterns of functional magnetic resonance imaging activation in association with structural
lesions in the rolandic region: a classification system.
J Neurosurg.
2001;
94
946-954
15
Duffau H, Sichez J P, Lehericy S.
Intraoperative unmasking of brain redundant motor sites during resection of a precentral
angioma: evidence using direct cortical stimulation.
Ann Neurol.
2000;
47
132-135
16
Duffau H.
Acute functional reorganisation of the human motor cortex during resection of cerebral
lesions: a study using intraoperative brain mapping.
J Neurol Neurosurg Psychiatry.
2001;
70
506-513
17
Krings T, Topper R, Willmes K, Reinges M H, Gilsbach J M, Thron A.
Activation in primary and secondary motor areas in patients with CNS neoplasms and
weakness.
Neurology.
2002;
58
381-390
18
Leherici S, Duffau H, Cornu P, Capelle L, Pidoux B, Carpentier A, Auliac S, Clemenceau S,
Sichez J P, Bitar A, Valery C A, van Effenterre R, Faillot T, Srour A, Fohanno D,
Philippon J, Le Bihan D, Marsault C.
Correspondence between functional magnetic resonance imaging somatotopy and individual
brain anatomy of the central region: comparison with intraoperative stimulation in
patients with brain tumors.
J Neurosurg.
2000;
92
589-598
19
Jack C R, Thompson R M, Butts R K, Sharbrough F W, Kelly P J, Hanson D P, Riederer S J,
Ehmann R L, Hangiandreou N J, Cascino G D.
Sensory motor cortex: correlation of presurgical mapping with functional MR and invasive
cortical mapping.
Radiology.
1994;
190
85-92
20
Yousry T A, Schmid U D, Jassoy A G, Schmidt D, Eisner W E, Reulen H J, Reiser M F,
Lissner J.
Topography of the cortical motor hand area: prospective study with functional MR imaging
and direct motor mapping at surgery.
Radiology.
1995;
195
23-29
21
Stippich C, Freitag P, Kassubek J, Sörös P, Kamada K, Kober H, Scheffler K, Hopfengärtner R,
Bilecen D, Radü E W, Vieth J B.
Motor, somatosensory and auditory cortex localization by fMRI and MEG.
NeuroReport.
1998;
9
1953-1957
22
Kober H, Nimsky C, Moller M, Hastreiter P, Fahlbusch R, Ganslandt O.
Correlation of sensorimotor activation with functional magnetic resonance imaging
and magnetoencephalography in presurgical functional imaging: a spatial analysis.
Neuroimage.
2001;
21
229-235
23
Krings T, Buchbinder B R, Butler W E, Chiappa K H, Jiang H J, Cosgrove G R, Rosen B R.
Functional magnetic resonance imaging and transcranial magnetic stimulation: complementary
approaches in the evaluation of cortical motor function.
Neurology.
1997;
48
1006-1416
24
Baumann S B, Noll D C, Kondziolka D S, Schneider W, Nichols T E, Mintun M A, Lewine J D,
Yonas H, Orrison W W, Sclabassi R J.
Comparison of functional magnetic resonance imaging with positron emission tomography
and magnetoencephalography to identify the motor cortex in a patient with an arteriovenous
malformation.
J Image Guid Surg.
1995;
1
191-197
25
Bittar R G, Olivier A, Sadikot A F, Andermann F, Pike G B, Reutens D C.
Presurgical motor and somatosensory cortex mapping with functional magnetic resonance
imaging and positron emission tomography.
J Neurosurg.
1999;
91
915-921
26
Braun V, Dempf S, Tomczak R, Wunderlich A, Weller R, Richter H P.
Multimodal cranial neuronavigation: direct integration of functional magnetic resonance
imaging and positron emission tomography data: technical note.
Neurosurgery.
2001;
48
1178-1181
27
Coenen V A, Krings T, Mayfrank L, Polin R S, Reinges M H, Thron A, Gilsbach J M.
Threedimensional visualization of the pyramidal tract in a neuronavigation system
during brain tumor surgery: first experiences and technical note.
Neurosurgery.
2001;
49
86-92
28
Inoue T, Shimizu H, Yoshimoto T.
Imaging the pyramidal tract in patients with brain tumors.
Clin Neurol Neurosurg.
1999;
101
4-10
29
Krings T, Reinges M H, Thiex R, Gilsbach J M, Thron A.
Function and diffusion-weighted magnetic resonance images of space-occupying lesions
affecting the motor system: imaging the motor cortex and pyramidal tracts.
J Neurosurg.
2001;
95
816-824
30
Stippich C, Heiland S, Tronnier V, Mohr A, Sartor K.
Klinische funktionelle Magnetresonanztomographie (fMRT): Physiologische Grundlagen,
technische Aspekte und Anforderungen für die klinische Anwendung.
Fortschr Röntgenstr.
2002;
174
43-49
31
Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Bürgel U, Klingberg T,
Larsson J, Zilles K, Roland P E.
Two different areas within the primary motor cortex of man.
Nature.
1996;
382
805-807
32 Kretschmann H J, Weinrich W (eds). Dreidimensionale Computergraphik neurofunktioneller
Systeme. Stuttgart; Thieme 1996: 42 - 54-72 - 88
33
Mohamed F B, Tracy J I, Faro S H, Emperado J, Koenigsberg R, Pinus A, Tsai F Y.
Investigation of alternating and continuous experimental task designs during single
finger opposition fMRI: a comparative study.
J Comput Assist Tomogr.
2000;
24
935-941
34
Yetkin F Z, McAuliffe T L, Cox R, Haughton V M.
Test-retest precision of functional MR in sensory and motor task activation.
Am J Neuroradiol.
1996;
17
95-98
35
Papke K, Hellmann T, Renger B, Morgenroth C, Knecht S, Schuierer G, Reimer P.
Clinical applications of functional MRI at 1.0 T: motor and language studies in healthy
subjects and patients.
Eur Radiol.
1999;
21
211-220
36
van der Kallen B F, van Erning L J, van Zuijlen M W, Merx H, Thijssen H O.
Activation of the sensorimotor cortex at 1.0 T: comparison of echo-planar and gradient-echo
imaging.
Am J Neuroradiol.
1998;
19
1099-1104
37
Stippich C, Kapfer D, Hempel E, Heiland S, Sartor K.
Robust localization of the contralateral precentral gyrus in hemiparetic patients
using the unimpaired ipsilateral hand: a clinical functional magnetic resonance imaging
protocol.
Neurosci Lett.
2000;
285
155-159
38
Marquart M, Birn R, Haughton V.
Single- and multiple event paradigms for identification of motor cortex activation.
Am J Neuroradiol.
2000;
21
94-98
39
Kurth R, Villringer K, Mackert B M, Schwiemann J, Braun J, Curio G, Villringer A,
Wolf K J.
FMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation.
NeuroReport.
1998;
9
207-212
40
Hammeke T A, Yetkin F Z, Mueller W M, Morris G L, Haughton V M, Rao S M, Binder J R.
Functional magnetic resonance imaging of somatosensory stimulation.
Neurosurgery.
1994;
35
677-681
41
Hajnal J V, Mayers R, Oatridge A, Schwieso J E, Young J R, Bydder G M.
Artifacts due to stimulus correlated motion in functional imaging of the brain.
Magn Reson Med.
1994;
31
283-291
42
Hoeller M, Krings T, Reinges M H, Hans F J, Gilsbach J M, Thron A.
Movement artefacts and MR BOLD signal increase during different paradigms für mapping
the sensorimotor cortex.
Acta Neurochir.
2002;
144
279-284
43
Seto E, Sela G, Mc Ilroy W E, Black S E, Staines W R, Bronskill M J, Mc Intosh A R,
Graham S J.
Quantifying head motion associated with motor tasks used in fMRI.
Neuroimage.
2001;
14
284-297
44
Boxerman J L, Bandettini P A, Kwong K K, Baker J R, Davis T L, Rosen B R, Weisskoff R M.
The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted
studies in vivo.
Magn Reson Med.
1995;
34
4-10
45
Hlustik P, Noll D C, Small S L.
Suppression of vascular artifacts in functional magnetic resonance images using MR
angiograms.
Neuroimage.
1998;
7
224-231
46
Krings T, Erberich S G, Roessler F, Reul J, Thron A.
MR blood oxygenation level-dependent signal differences in parenchymal and large draining
vessels: implications for functional MR imaging.
Am J Neuroradiol.
1999;
20
1907-1914
47
Holodny A I, Schulder M, Liu W C, Maldjian J A, Kalnin A J.
Decreased BOLD functional MR activation of the motor and somatosensory cortices adjacent
to a glioblastome multiforme: implications for image-guided neurosurgery.
Am J Neuroradiol.
1999;
20
609-612
48
Holodny A I, Schulder M, Liu W C, Wolko J, Maldjian J A, Kalnin A J.
The effect of brain tumors on BOLD functional MR imaging activation in the adjacent
motor cortex: implications for image guided neurosurgery.
Am J Neuroradiol.
2000;
21
1415-1422
49
Schreiber A, Hubbe U, Ziyeh S, Hennig J.
The influence of gliomas and nonglial space-occupying lesions on blood-oxygen-level-dependent
contrast enhancement.
Am J Neuroradiol.
2000;
21
1055-1063
50
Schmithorst V J, Dardzinski B J, Holland S K.
Simultaneous correction of ghost and geometric distortion artifacts in EPI using a
multiecho reference scan.
IEEE Trans Med Imaging .
2001;
20
535-539
51
Friston K J, Frith C D, Liddle P F, Dolan R J, Lammertsma A A, Frackowiack R SJ.
The relationship between global and local changes in PET scans.
J Cereb Blood Flow Metab.
1990;
10
458-466
52
Friston K J, Frith C D, Liddle P F, Frackowiack R SJ.
Comparing functional (PET) images: The assessment of significant change.
J Cereb Blood Flow Metab.
1991;
11
690-699
53
Cox R W.
AFNI: software for analysis and visualization of functional magnetic resonance neuroimages.
Comput Biomed Res.
1996;
29
162-173
54
Gold S, Christian B, Arndt S, Zeien G, Cizaldo T, Johnson D L, Flaum M, Andreasen N C.
Functional MRI statistical software packages: a comparative analysis.
Hum Brain Mapp.
1998;
6
73-84
Dr. med. C. Stippich
Abt. Neuroradiologie, Neurologische Klinik, Ruprecht-Karls-Universität
Im Neuenheimer Feld 400
69112 Heidelberg
Phone: + 06221 567566
Fax: + 06221 564673
Email: christoph_stippich@med.uni-heidelberg.de