Zusammenfassung
Ziel dieser Arbeit ist es, den derzeitigen Wissensstand über die wichtigsten zellulären
und molekularen Faktoren darzulegen, die Einfluss auf die Regeneration peripherer
Nerven haben. Die erste Voraussetzung für die Regeneration eines Axons nach einer
Läsion ist das Überleben der Nervenzelle. Dies ist von der Art der Nervenzelle, ihrem
Alter, der Art der Verletzung und der Entfernung der Verletzung vom Zellsoma abhängig.
Spinale Motoneurone sind weniger anfällig für den verletzungsbedingten Zelltod als
kraniale Motoneurone und sensible Nervenzellen. Bei der überlebenden Nervenzelle laufen
verschiedene Veränderungen ab, die eine Wandlung vom ruhenden zum auswachsenden Neuron
bezeichnen. Die verletzten Motoneurone produzieren verschiedene neurotrophische Faktoren
und die dazugehörigen Rezeptoren, die sowohl auf das Neuron selbst wie auch auf die
nicht neuronalen Zellen, in erster Linie die Schwannschen Zellen, wirken. Im distalen
Nervenstumpf sind die Vorgänge zu Beginn degenerativ und beinhalten den Abbau der
Axone und die Phagozytose des Myelins, die so genannte Wallersche Degeneration. In
den ersten zwei Tagen der Wallerschen Degeneration ist die Einwanderung von Makrophagen
minimal, so dass die Schwannschen Zellen den myelinalen Debris phagozytieren. Danach
übernehmen dies hämatogene Makrophagen. Nach zwei Wochen ist die Wallersche Degeneration
dann beendet. Mit dem Verlust des axonalen Kontaktes beginnt die myelinisierende Schwannsche
Zelle innerhalb von zwei Tagen die Umstellung von der myelinisierenden zur regenerationsfördernden
Zelle, d. h. es kommt zur Proliferation der Zellen, zur Ausbildung einer Zellsäule
(Büngnersche Bänder) als Leitschiene für die regenerierenden Nervenfasern und zu einer
verminderten Produktion der Substanzen, die zur Myelinisierung und Aufrechterhaltung
des Myelins notwendig sind, während Wachstumsfaktoren, die bei intakten Nerven nur
in geringem Maß produziert werden, vermehrt hergestellt und sezerniert werden. Die
Expression vieler Moleküle, die entweder direkt oder über nicht-neuronale Zellen,
wie Schwannsche Zellen, Makrophagen und Fibroblasten, Einfluss auf die axonale Regeneration
haben, wird reguliert. Diese Substanzen können in neurotrophische Faktoren und Zelladhäsionsmoleküle
unterteilt werden. Der therapeutische Einsatz von Pharmaka oder Wachstumsfaktoren
in der Rekonstruktion peripherer Nerven befindet sich erst in den Anfängen und bedarf
noch experimenteller und klinischer Versuche. In tierexperimentellen Studien zeigten
eine Vielzahl von Wachstumsfaktoren eine regenerationsfördernde Potenz. Aber auch
das Immunsuppressivum FK 506 verbesserte die Regeneration sowohl bei Kompressionsneuropathien
als auch nach einer kompletten Nervendurchtrennung.
Abstract
This paper describes the most important cellular and molecular factors that influence
nerve regeneration. The first prerequisite for axonal regeneration is survival of
the neuron. This depends on neuron type, age, and the degree and proximity of the
injury to the cell body. Spinal motoneurons are less susceptible to injury-induced
death than cranial motoneurons and sensory neurons. The surviving neurons undergo
changes characteristic of a switch from a transmitting mode to a growing mode. They
produce various neurotrophic factors and their receptors influencing the neuron and
the non-neuronal cells such as Schwann cells. The distal nerve stump undergoes degenerative
processes including removal of axons and phagocytosis of myelin debris, the so-called
Wallerian degeneration. Until the second day phagocytosis is done by Schwann cells,
hematogenous macrophages invade the distal stump at the second day and phagocyte the
whole debris within two weeks. Devoid of axonal contact, the myelinating Schwann cells
switch their function from myelination to growth support for the regenerating axons,
including cell proliferation, downregulation of myelin components and upregulation
of neurotrophic factors. Additionally, the Schwann cells form the so-called Bands
of Büngner, cell columns serving as pathway for the growing axon. Trophic factors,
cell adhesion molecules and extracellular matrix influence the neuron, the growing
axon and the endorgan as well as the non-neuronal cells such as Schwann cells, fibroblasts
and macrophages. Application of drugs or trophic substances to enhance nerve regeneration
after trauma and reconstruction is in the very beginning, and thus requires further
experimental and clinical studies. Experimentally, FK 506 was found to support axonal
regeneration after crush lesions and nerve grafting. Growth factors are currently
administered clinically in other neurological diseases.
Nerven
Degeneration - Regeneration - Wachstumsfaktoren - Adhäsionsmoleküle - Therapieansätze
Nerves
degeneration - regeneration - growth factors - adhesion molecules - therapeutic approaches
Literatur
1
Aebischer P, Schluep M, Deglon N, Joseph J M, Hirt L, Heyd B, Goddard M, Hammang J P,
Zurn A D, Kato A C, Regli F, Baetge E E.
Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells
in amyotrophic lateral sclerosis patients.
Nat Med.
1996;
2
696-699
2
Apfel S C.
Nerve growth factor for treatment of diabetic neuropathy: what went wrong, what went
right, and what does the future hold?.
Int Rev Neurobiol.
2002;
50
393-413
3
Apfel S C.
Neurotrophic factors in peripheral neuropathies: Therapeutic implications.
Brain Pathol.
1999;
9
393-413
4
Aszmann O C, Korak K J, Kropf N, Fine E, Aebischer P, Frey M.
Simultaneous GDNF and BDNF application leads to increased motoneuron survival and
improved functional outcome in an experimental model for obstetric brachial plexus
lesions.
Plast Reconstr Surg.
2002;
110
1066-1072
5
Barde Y A.
The nerve growth factor family.
Prog Growth Factor Res.
1990;
2
237-248
6
Barras F M, Pasche P, Bouche N, Aebischer P, Zurn A D.
Glial cell line-derived neurotrophic factor channels promotes facial nerve regeneration
in the rat.
J Neurosci Res.
2002;
70
746-755
7
Bernstein-Goral H, Diener P S, Bregman B S.
Regenerating and sprouting axons differ in their requirements for growth after injury.
Exp Neurol.
1997;
148
51-72
8
Bormann P, Zumsteg V M, Roth L W, Reinhard E.
Target contact regulates GAP-43 and α-tubulin mRNA levels in regenerating retinal
ganglion cells.
J Neurosci Res.
1998;
52
405-419
9
Bottner M, Krieglstein K, Unsicker K.
The transforming growth factor-betas: structure, signaling, and roles in nervous system
development and functions.
J Neurochem.
2000;
75
2227-2240
10
Boyd J G, Gordon T.
A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived
neurotrophic factor.
Eur J Neurosci.
2002;
15
613-626
11
Brück W.
The role of macrophages in Wallerian degeneration.
Brain Pathol.
1997;
7
741-752
12
Bruses J L, Chauvet N, Rubio M E, Rutishauser U.
Polysialic acid and the formation of oculomotor synapses on chick ciliary neurons.
J Comp Neurol.
2002;
446
244-256
13
Büngner v O.
Ueber die Degenerations- und Regenerationsvorgänge am Nerven nach Verletzungen.
Beitr Path Anat.
1891;
10
321-393
14
Butte M J.
Neurotrophic factor structure reveal clues to evolution, binding, specificity, and
receptor activation.
Cell Mol Life Sci.
2001;
58
1003-1013
15
Campana W M, Darin S J, O'Brien J S.
Phosphatidylinositol 3-kinase and AKT protein kinase mediate IGF-I- and prosatide-induced
survival of Schwann cells.
J Neurosci Res.
1999;
57
332-341
16
Caplan J, Tiangco D A, Terzis J K.
Effects of IGF-II in a new end-to-side model.
J Reconstr Microsurg.
1999;
15
351-358
17
Chan J M, Stampfer M J, Giovannucci E, Gann P H, Ma J, Wilkinson P, Hennekens C H,
Pollak M.
Plasma insulin-like growth factor-I and prostate cancer risk: A prospective study.
Science.
1998;
279
563-566
18
Claus P, Grothe C.
Molecular cloning and developmental expression of rat fibroblast growth factor receptor
3.
Histochem Cell Biol.
2001;
115
147-155
19
Conlon I J, Dunn G A, Mudge A W, Raff M C.
Extracellular control of cell size.
Nature Cell Biol.
2001;
3
918-921
20
Creange A, Barlovatz-Meimon G, Gherardi R K.
Cytokines and peripheral nerve disorders.
Eur Cytokine Netw.
1997;
8
145-151
21
Dechant G, Barde Y A.
The neurotrophin receptor p75NTR : novel functions and implications for diseases of the nervous system.
Nature Neurosci.
2002;
5
1131-1136
22
DeChiara T M, Vejsada R, Poueymirou W T, Acheson A, Suri C, Conover J C, Friedman B,
McClain J, Pan L, Stahl N, Ip N Y, Kato A, Yancopulos G D.
Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron
deficits at birth.
Cell.
1995;
83
313-322
23
Dezawa M.
The interaction and adhesive mechanisms between axon and Schwann cell during central
and peripheral nerve regeneration.
Kaibogaku Zasshi.
2000;
75
255-265
24
Dezawa M, Adachi-Usami E.
Role of Schwann cells in retinal ganglion cell axon regeneration.
Prog Retin Eye Res.
2000;
19
171-204
25
Dong Z, Brennan A, Liu N, Yarden Y, Lefkowitz G, Mirsky R, Jessen K R.
Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation,
and maturation of rat Schwann cell precursors.
Neuron.
1995;
15
585-596
26
Dubey N, Letourneau P C, Tranquillo R T.
Guide neurote elongation and Schwann cell invasion into magnetically aligned collagen
in simulated peripheral nerve regeneration.
Exp Neurol.
1999;
158
338-350
27
Dyck P J, Peroutka S, Rask C, Burton E, Baker M K, Lehman K A, Gillen D A, Hokanson J L,
O'Brien P C.
Intradermal recombinant human nerve growth factor induces pressure allodynia and lowered
heat-pain threshold in humans.
Neurology.
1997;
48
501-505
28
Fansa H, Keilhoff G, Förster G, Seidel B, Wolf G, Schneider W.
Acellular muscle with Schwann-cell implantation: An alternative biologic nerve conduit.
J Reconstr Microsurg.
1999;
15
531-537
29
Fansa H, Keilhoff G, Horn T, Altmann S, Wolf G, Schneider W.
Stimulation des Wachstums Schwannscher Zellen und der axonalen Regeneration peripherer
Nerven durch das Immunsuppressivum FK 506.
Handchir Mikrochir Plast Chir.
1999;
31
323-329
30
Fansa H, Keilhoff G, Plogmeier K, Frerichs O, Wolf G, Schneider W.
Successful implantation of Schwann cells in acellular muscles.
J Reconstr Microsurg.
1999;
15
61-65
31
Fansa H, Schneider W, Wolf G, Keilhoff G.
Insulin-like growth factor I (IGF-I) improves axonal regeneration in nerve autografts
but not in tissue engineered grafts derived from muscle basallamina and cultured Schwann
cells.
Muscle Nerve.
2002;
26
87-93
32
Feldman E L, Sullivan K A, Kim B, Russell J W.
Insulin-like growth factors regulate neuronal differentiation and survival.
Neurobiol Dis.
1997;
4
201-214
33
Fortes W M, Noah E M, Liuzzi F J, Terzis J K.
End-to-side neurorrhaphy: Evaluation of axonal response and upregulation of IGF-I
and IGF-II in a non-injury model.
J Reconstr Microsurg.
1999;
15
449-457
34
Fu S Y, Gordon T.
The cellular and molecular basis of peripheral nerve regeneration.
Mol Neurobiol.
1997;
14
67-116
35
Georgiou J, Charlton M P.
Non-myelin-forming perisynaptic Schwann cells express protein zero and myelin-associated
glycoprotein.
Glia.
1999;
27
101-109
36
Gillen C, Jander S, Stoll G.
Sequential expression of mRNA for proinflammatory cytokines and interleukin-10 in
the rat peripheral nervous system: Comparison between immune-mediated demyelination
and Wallerian degeneration.
J Neurosci Res.
1998;
51
489-496
37
Gold B G, Gordon H S, Wang M S.
Efficacy of delayed or discontinuous FK 506 administrations on nerve regeneration
in the rat sciatic nerve crush model: Lack of evidence for a conditioning lesion-like
effect.
Neurosci Lett.
1999;
267
33-36
38
Gold B G, Zeleny-Pooley M, Chaturvedi P, Wang M S.
Oral administration of a nonimmunosuppressant FKBP-12 ligand speeds nerve regeneration.
Neuro Report.
1998;
9
553-558
39
Goldberg J L, Barres B A.
The relationship between neuronal survival and regeneration.
Annu Rev Neurosci.
2000;
23
579-612
40
Griffin J W, George R, Ho T.
Macrophage systems in peripheral nerves. A review.
J Neuropathol Exp Neurol.
1993;
52
553-560
41
Grothe C, Heese K, Meisinger C, Wewetzer K, Kunz C, Cattini O P, Otten U.
Expression of interleukin-6 and its receptor in the sciatic nerve and cultured Schwann
cells: relation to 18 kD fibroblast growth factor-2.
Brain Res.
2000;
885
172-181
42
Grothe C, Meisinger C, Claus P.
Invivo expression and localization of fibroblast growth factor system in the intact
and lesioned rat peripheral nerve and spinal ganglia.
J Comp Neurol.
2001;
434
342-357
43
Grothe C, Nikkhah G.
The role of basic fibroblast growth factor in peripheral nerve regeneration.
Anat Embryol.
2001;
204
171-177
44
Gulati A K.
Immune response and neurotrophic factor interactions in peripheral nerve transplants.
Acta Haematol.
1998;
99
171-174
45
Hall M E.
Changes in synthesis of specific proteins in axotomized dorsal root ganglia.
Exp Neurol.
1982;
76
83-93
46
Harper S, Bilsland J, Young L, Bristow L, Boyce S, Mason G, Rigby M, Hewson L, Smith D,
O'Donnell R, O'Connor D, Hill R G, Evans D, Swain C, Williams B, Hefti F.
Analysis of the neurotrophic effects of GPI-1046 on neuron survival and regeneration
in culture and in vivo.
Neuroscience.
1999;
88
257-267
47
Heerssen H M, Segal R A.
Location, location, location: a spatial view of neurotrophin signal transduction.
TINS.
2002;
25
160-165
48
Hempstead B.
The many faces of p75NTR .
Curr Opinion Neurobiol.
2002;
12
260-267
49
Hinks G L, Franklin R J.
Delayed changes in growth factor gene expression during slow remyelination in the
CNS of aged rats.
Mol Cell Neurosci.
2000;
16
542-556
50
Hoke A, Ho T, Crawford T O, LeBel C, Hilt D, Griffin J W.
Glial cell line-derived neurotrophic factor alters axon Schwann cell units and promotes
myelination in unmyelinated nerve.
J Neurosci.
2003;
23
561-567
51
Holly S P, Larson M K, Parise L V.
Multiple roles of integrins in cell motility.
Exp Cell Res.
2000;
261
69-74
52
Homma S, Yaginuma H, Vinsant S, Seino M, Kawata M, Gould T, Shimada T, Kobayashi N,
Oppenheimer R W.
Differential expression of the GDNF family receptor RET at GFRalpha1, 2 and 4 in subsets
of motoneurons: a relationship between motoneuron birthdate and receptor expression.
J Comp Neurol.
2003;
456
245-259
53
Honma M, Namikawa K, Mansur K, Iwata T, Mori N, Iizuka H, Kiyamy H.
Developmental alteration of nerve injury induced glial cell line-derived neurotrophic
factor (GDNF) receptor expression is crucial for determination of injured motoneuron
fate.
J Neurochem.
2002;
82
961-975
54
Ide C.
Peripheral nerve regeneration.
Neurosci Res.
1996;
25
101-121
55
Keilhoff G, Fansa H, Schneider W, Wolf G.
In vivo predegeneration of peripheral nerves: An effective technique to obtain activated
Schwann cells for nerve conduits.
J Neurosci Methods.
1999;
89
17-24
56
Kihara M, Kamijo M, Nakasaka Y, Mitsui Y, Takahashi M, Schmelzer J D.
A small dose of the immunosuppressive agent FK506 (tacrolimus) protects peripheral
nerve from ischemic fiber degeneration.
Muscle Nerve.
2001;
24
1601-1606
57
Kimpinski K, Mearow K.
Neurite growth promotion by nerve growth factor and insulin-like growth factor-1 in
cultured adult sensory neurons: role of phosphoinositide 3-kinase and mitogen activated
protein kinase.
J Neurosci Res.
2001;
63
486-499
58
Kirstein M, Farinas I.
Sensing life: regulation of sensory neuron survival by neurotrophins.
Cell Mol Life Sci.
2002;
59
1787-1802
59
Kobayashi N R, Fan D P, Giehl K M, Bedard A M, Wiegand S J, Tetzlaff W.
BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy,
stimulate GAP-43 and Tα1-tubulin mRNA expression, and promote axonal regeneration.
J Neurosci.
1997;
17
9583-9595
60
Kreutzberg G W.
Principles of neuronal regeneration.
Acta Neurochir Suppl.
1996;
66
103-106
61
Krieglstein K, Strelau J, Schober A, Sullivan A, Unsicker K.
TGF-beta and the regulation of neuron survival and death.
J Physiol Paris.
2002;
96
25-30
62
Kwon B K, Liu J, Messerer C, Kobayashi N R, McGraw J, Oschipok K, Tetzlaff W.
Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury.
Proc Natl Acad Sci USA.
2002;
99
3246-3251
63
Lassner F, Schaller E, Steinhoff G, Wonigeit K, Walter G F, Berger A.
Cellular mechanisms of rejection and regeneration in peripheral nerve allografts.
Transplantation.
1989;
48
386-392
64
Laura M, Gregson N A, Curmi Y, Hughes R A.
Efficacy of leukemia inhibitory factor in experimental autoimmune neuritis.
J Neuroimmunol.
2002;
133
56-59
65
Leong J, Hayes A, Austin L, Morrison W.
Muscle protection following motor nerve repair in combination with leukemia inhibitory
factor.
J Hand Surg [Am].
1999;
24
37-45
66
Lewin G R, Rueff A M, Mendell L M.
Peripheral and central mechanisms of NGF-induced hyperalgesia.
Eur J Neurosci.
1994;
6
1903-1912
67
Lilje O, Armati P J.
The distribution and abundance of MHC and ICAM-I on Schwann cells in vitro.
J Neuroimmunol.
1997;
77
75-84
68
Liu R Y, Schmid R S, Snider W D, Mannes F.
NGF enhances sensory axon growth induced by laminin but not by the L1 cell adhesion
molecule.
Molec Cell Neurosci.
2002;
20
2-12
69
Ma Q P, Tian L, Woolf C J.
Resection of sciatic nerve re-triggers central sprouting of A-fibre primary afferents
in the rat.
Neurosci Lett.
2000;
288
215-218
70
Madsen J R, MacDonald P, Irwin N, Goldberg D E, Yao G L, Meiri K F, Rimm I J, Stieg P E,
Benowitz L I.
Tacrolimus (FK 506) increases neuronal expression of GAP-43 and improves functional
recovery after spinal cord injury in rats.
Exp Neurol.
1998;
154
673-683
71
Martin L J, Kaiser A, Price A C.
Motor neuron degeneration after sciatic nerve avulsion in adult rat evolves with oxidative
stress and is apoptosis.
J Neurobiol.
1999;
40
185-201
72
Mason J L, Suzuki K, Chaplin D D, Matsushima G K.
Interleukin-1 beta promotes repair of the CNS.
J Neurosci.
2001;
21
7046-7052
73
McGowan K A, Marinkovich M P.
Laminins in human disease.
Microsc Res Tech.
2000;
51
262-279
74
McGraw T S, Mickle J P, Shaw G, Streit W J.
Axonally transported peripheral signals regulate alpha-internexin expression in regenerating
motoneurons.
J Neurosci.
2002;
22
4955-4963
75
Mitchell J D, Wokke J H, Borasio G D.
Recombinant human insulin-like growth factor I (rhIGF-I) for amyotrophic lateral sclerosis/motor
neuron disease.
Cochrane Database Syst Rev.
2002;
3
CD002064
76
Munson J B, Shelton D L, McMahon S B.
Adult mammalian sensory and motor neurons: Roles of endogenous neurotrophins and rescue
by exogenous neurotrophins after axotomy.
J Neurosci.
1997;
17
470-476
77
Near S L, Whalen L R, Miller J A, Ishii D N.
Insulin-like growth factor II stimulates motor nerve regeneration.
Proc Natl Acad Sci USA.
1992;
89
11716-11720
78
Neet K E, Campenot R B.
Receptor binding, internalization, and retrograd transport of neurotrophic factors.
Cell Molec Life Sci.
2001;
58
1021-1035
79
Oka N, Kawasaki T, Matsui M, Tachibana H, Sugita M, Akiguchi I.
Neuregulin is associated with nerve regeneration in axonal neuropathies.
Neuroreport.
2000;
11
3673-3676
80
Olson L.
Clearing a path for nerve growth.
Nature.
2002;
416
589-590
81
Penn R D, Kroin J S, York M M, Cedarbaum J M.
Intrathecal ciliary neurotrophic factor delivery for treatment of amyotrophic lateral
sclerosis (phase I trial).
Neurosurgery.
1997;
40
94-99
82
Pierson C R, Zhang W, Murakawa Y, Sima A A.
Early gene responses to trophic factors in nerve regeneration differ in experimental
type 1 and type 2 diabetic polyneuropathies.
J Neuropathol Exp Neurol.
2002;
61
857-871
83
Plunet W, Kwon B K, Tetzlaff W.
Promoting axonal regeneration in the central nervous system by enhancing the cell
body response in axotomy.
J Neurosci Res.
2002;
68
1-6
84
Probstmeier R, Nellen J, Gloor S, Wernig A, Pesheva P.
Tenascin-R is expressed by Schwann cells in the peripheral nervous system.
J Neurosci Res.
2001;
64
70-78
85
Reichert F, Saada A, Rotshenker S.
Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes:
Phagocytosis and the galactose-specific lectin MAC-2.
J Neurosci.
1994;
14
3231-3245
86
Reichert F, Slobodov U, Makranz C, Rotshenker S.
Modulation (inhibition and augmentation) of complement receptor-3-mediated myelin
phagocytosis.
Neurobiol Diseases.
2001;
8
504-512
87
Ren K, Thomas D A, Dubner R.
Nerve growth factor alleviates a painful peripheral neuropathy in rats.
Brain Res.
1995;
699
286-292
88
Rind H B, von Bartheld C S.
Anterograd axonal transport of internalized GDNF in sensory and motor neurons.
NeuroReport.
2002;
13
659-664
89 Rupniak N MJ, Laird J MA, Boyce S, Hill R G.
Neurotrophic factors in peripheral nerve injury and regeneration. Hefti F Handbook of Experimental Pharmacology. Neurotrophic Factors. Vol. 134. Berlin;
Springer Verlag 1999: 147-174
90
Saarma M.
GDNF - a stranger in the TGF-beta super family?.
Eur J Biochem.
2000;
267
6968-6971
91
Santos X, Rodrigo J, Hontanilla B, Bilbao G.
Evaluation of peripheral nerve regeneration by nerve growth factor locally administered
with a novel system.
J Neurosci Methods.
1998;
85
119-127
92
Schäfer M, Fruttiger M, Montag D, Schachner M, Martini R.
Disruption of the gene for the myelin-associated glycoprotein improves axonal regrowth
along myelin in C57 BL/Wlds mice.
Neuron.
1996;
16
1107-1113
93 Schmid R S, Mannes P F.
Cell recognition molecules and disorders of neurodevelopment. Kalverboer AF, Gramsberger A Handbook of Brain and Behaviour in Human Development. Great
Britain; Kluwer Academic 2001
94 Schröder J M. Pathology of Peripheral Nerves. An Atlas of Structural and Molecular
Pathological Changes. Berlin, Heidelberg, New York; Springer Verlag 2001
95
Shamash S, Reichert F, Rotshenker S.
The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1
alpha, and interleukin-1 beta.
J Neurosci.
2002;
22
3052-3060
96
Shi T J, Tandrup T, Bergman E, Xu Z Q, Ulfhake B, Hökfelt T.
Effect of peripheral nerve injury in dorsal root ganglion neurons in the C57 BL/6J
mouse: marked changes both in cell numbers and neuropeptide expression.
Neuroscience.
2001;
105
249-263
97
Shibuya Y, Mizoguchi A, Takeichi M, Shimada K, Ide C.
Localization of N-cadherin in the normal and regenerating nerve fibers of the chicken
peripheral nervous system.
Neuroscience.
1995;
67
253-261
98
Siebert H, Brück W.
The role of cytokines and adhesion molecules in axon degeneration after peripheral
nerve axotomy: a study in different knock out mice.
Brain Res.
2003;
960
152-156
99
Silani V, Braga M, Cardin V, Scarlato G.
The pathogenesis of ALS: implication for treatment strategies.
Neurol Neuochir Pol.
2001;
35
25-39
100
Soares S, von Boxberg Y, Lombard M C, Ravaille-Veron M, Fischer N, Eyer J, Nothias F.
Phosphorylated MAP1 B is induced in central sprouting of primary afferents in response
to peripheral injury but not in response to rhizotomy.
Eur J Neurosci.
2002;
16
593-606
101
Stankoff B, Aigot M S, Noel F, Wattilliaux A, Zale B, Lubetzki C.
Ciliary neurotrophic factor (CNTF) enhances myelin formation: a novel role for CNTF
and CNTF-related molecules.
J Neurosci.
2002;
22
9221-9227
102
Stoll G, Müller H W.
Nerve injury, axonal degeneration and neural regeneration: Basic insights.
Brain Pathol.
1999;
9
313-325
103
Sulaiman O A, Gordon T.
Transforming growth factor-beta and forskolin attenuate the adverse effects of long-term
Schwann cell denervation on peripheral nerve regeneration in vivo.
Glia.
2002;
37
206-218
104 Sunderland S. Nerve Injuries and their Repair. Edinburgh; Churchill Livingstone
1991
105
Sunderland S.
The anatomy and physiology of nerve injury.
Muscle Nerve.
1990;
13
771-784
106
Syroid D E, Zorick T S, Arbet-Engels C, Kilpatrick T J, Eckhart W, Lemke G.
A role for insulin-like growth factor I in the regulation of Schwann cell survival.
J Neurosci.
1999;
19
2059-2068
107
Takahashi M.
The GDNF/RET signaling pathway and human diseases.
Cytokines and Growth Factor Rev.
2001;
12
361-373
108
Takahashi R, Yokoji H, Misawa H, Hayashi M, Hu J, Deguchi T.
A null mutation in the human CNTF gene is not causally related to neurological diseases.
Nat Genet.
1994;
7
79-84
109
Tang S, Qiu J, Nikulina E, Filbin M T.
Soluble myelin-associated glycoprotein released from damaged white matter inhibits
axonal regeneration.
Mol Cell Neurosci.
2001;
18
259-269
110
Terenghi G, Calder J S, Birch R, Hall S M.
A morphological study of Schwann cells and axonal regeneration in chronically transected
human peripheral nerves.
J Hand Surg [Br].
1998;
23
583-587
111
Terenghi G.
Peripheral nerve injury and regeneration.
Histol Histopathol.
1995;
10
709-718
112
Terzis J K, Sun D D, Thanos P K.
Historical basic science review: Past, present, and future of nerve repair.
J Reconstr Microsurg.
1997;
13
215-225
113
Thoenen H, Sendtner M.
Neurotrophins: from enthusiastic expections through sobering experiences to rational
therapeutic approaches.
Nature Neurosci Suppl.
2002;
5
1046-1050
114
Tiangco D A, Papakonstantinou K C, Mullinax K A, Terzis J K.
IGF-I and end-to-side nerve repair: a dose-response study.
J Reconstruc Microsurg.
2001;
17
247-256
115
Toba T, Nakamura T, Lynn A K, Matsumoto K, Fukuda S, Yoshitani M, Hori Y, Shimizu Y.
Evaluation of peripheral nerve regeneration across an 80-mm gap using a polyglycolic
acid (PGA)-collagen nerve conduit filled with laminin-soaked collagen sponge in dogs.
Int J Artif Organs.
2002;
25
230-237
116
Tsao J W, George E B, Griffin J W.
Temperature modulation reveals three distinct stages of Wallerian degeneration.
J Neurosci.
1999;
19
4718-4726
117
Tucker R P, Hagios C, Santiago A, Chiquet-Ehrismann R.
Tenascin-Y is concentrated in adult nerve roots and has barrier properties in vitro.
J Neurosci Res.
2001;
66
439-447
118
Unsicker K, Grothe C, Westermann R, Wewetzer K.
Cytokines in neural regeneration.
Curr Opin Neurobiol.
1992;
2
671-678
119
Urschel B A, Brown P N, Hulsebosch C E.
Differential effects on sensory nerve processes and behavioral alterations in the
rat after treatment with antibodies to nerve growth factor.
Exp Neurol.
1991;
114
44-52
120
Varga Z M, Schwab M E, Nicholls J G.
Myelin-associated neurite growth-inhibitory proteins and suppression of regeneration
of immature mammalian spinal cord in culture.
Proc Natl Acad Sci USA.
1995;
92
10959-10963
121
Wallquist W, Patarroyo M, Thams S, Carlstedt T, Stark B, Cullheim Hammarberg H.
Laminin chains in rat and human peripheral nerve: distribution and regulation during
development and after axonal injury.
J Comp Neurol.
2002;
454
284-293
122
Watanabe O, Mackinnon S E, Tarasidis G, Hunter D A, Ball D J.
Long-term observation of the effect of peripheral nerve injury in neonatal and young
rats.
Plast Reconstr Surg.
1998;
102
2072-2081
123
Webb K, Budko E, Neuberger R J, Chen S, Schachner M, Tresco P A.
Substrate-bound human recombinant L1 selectively promotes neuronal attachment and
outgrowth in the presence of astrocytes and fibroblasts.
Biomaterials.
2001;
22
1017-1028
124
Werner K, Bitsch A, Bunkowski S, Hemmerlein B, Bruck W.
The relative number of macrophages/microglia expressing macrophage colony-stimulating
factor and its receptor decreases in multiple sclerosis lesions.
Glia.
2002;
40
121-129
125
Wewetzer K, Grothe C, Claus P.
In vitro expression and regulation of rat fibroblast growth factor-2 isoforms on PC12
and Schwann cells.
Growth Factors.
2001;
19
175-191
126
Wiesmann C, de Vos A M.
Nerve growth factor: structure and function.
Cell Mol Life Sci.
2001;
58
746-759
127
Xu G, Pierson C R, Murakawa Y, Sima A A.
Altered tubulin and neurofilament expression and impaired axonal growth in diabetic
nerve regeneration.
J Neuropathol Exp Neurol.
2002;
61
164-175
128
Xu G, Sima A A.
Altered immediated early gene expression in injured diabetic nerve: implications in
regeneration.
J Neuropathol Exp Neurol.
2001;
60
972-983
129
Yamamoto M, Sobue G, Li M, Arakawa Y, Mitsuma T, Kimata K.
Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and low-affinity
nerve growth factor receptor (LNGFR) mRNA levels in cultured Schwann cells; differential
time and dose-dependent regulation by cAMP.
Neurosci Lett.
1993;
152
37-40
130
Yamamoto M, Mitsuma N, Hattor N, Sobue G.
Parallel expression of neurotrophic factors and their receptor in chronic inflammatory
demyelinating polyneuropathy.
Muscle Nerve.
2002;
25
601-604
131
Ye P, Li L, Richards R G, DiAugustine R P, D'Ercole A J.
Myelination is altered in insuline-like growth factor-I null mutant mice.
J Neurosci.
2002;
22
6041-6051
132
Yin Q, Kemp G J, Frostick S P.
Neurotrophins, neurones and peripheral nerve regeneration.
J Hand Surg.
1998 [Br];
23
433-437
133
Yin Yin Q, Kemp G J, Yu L G, Wagstaff S C, Frostick S P.
Expression of Schwann cell-specific proteins and low-molecular-weight neurofilament
protein during regeneration of sciatic nerve treated with neurotrophin-4.
Neuroscience.
2001;
105
779-783
134
You S, Petrov T, Chung P H, Gordon T.
The expression of the low affinity nerve growth factor receptor in long-term denervated
Schwann cells.
Glia.
1997;
20
87-100
135
Zheng J Q, Kelly T K, Chang B, Ryazantsev S, Rajasekaran A K, Martin K C, Twiss J L.
A functional role for intra-axonal protein synthesis during axonal regeneration from
adult sensory neurons.
J Neurosci.
2001;
21
9291-9303
1 Herrn o. Univ.-Prof. Dr. Wolfgang Schneider zum 60. Geburtstag gewidmet
PD Dr. med. Hisham Fansa
Klinik für Plastische, Wiederherstellungs- und Handchirurgie Otto-von-Guericke-Universität
Leipziger Straße 44
39120 Magdeburg
Email: h@fansa.de