Zusammenfassung
Die Aktivierung der plasmatischen Gerinnungskaskade wird durch das Vorhandensein des
Gewebefaktors (tissue factor, TF) auf der Oberfläche von Zellen und subendothelialen
Strukturen verursacht. Die Beendigung des Gerinnungsvorganges nach z. B. Verletzungen
ist ebenso überlebenswichtig wie ein schnelles Aktivieren der Gerinnungskaskade. Darüber
hinaus sind physiologische Antikoagulationsmechanismen erforderlich, um dem gerinnungsaktivierenden
Effekt des verlangsamten Blutstromes und des ungünstigeren Verhältnisses von Reibungsoberfläche
(Endothel) und durchströmendem Blut in der Mikrozirkulation Rechnung zu tragen. Dabei
handelt es sich um das Antithrombin-Glykosaminoglykan und das Thrombin- Thrombomodulin-Protein
C-System. Bei einer statischen Gerinnungsstörung besteht in der Regel eine Verminderung
eines einzelnen oder einer bestimmten Gruppe von Gerinnungsfaktoren oder -inhibitoren,
die im zeitlichen Verlauf unverändert bleibt. Bei der dynamischen Gerinnungsstörung
führt ein pathologischer prokoagulatorischer Stimulus (z. B. Trauma, Schockzustand,
Endotoxin in der Sepsis, Schlangenbiss) zu einer überschießenden Aktivierung des Gerinnungssystems
und damit zu einer Umsatzsteigerung der Gerinnungsfaktoren. Statische Gerinnungsstörungen
können mit therapeutischer Zurückhaltung gesehen werden. Dynamische Gerinnungsstörungen
können nach chirurgischer Blutstillung zuerst durch eine Inhibitorsubstitution mittels
AT korrigiert werden, begleitend sollten gerinnungsaktive Frischplasmen transfundiert
werden. Bei auch mit Antifibrinolytika nicht behebbaren diffusen Blutungszuständen
lässt sich eine probatorische Therapie mit einem rekombinanten F VII a- Konzentrat
vertreten. Zu den künftigen Perspektiven zur Verringerung des Fremdblutkomponentenverbrauchs
gehören die intraoperative Gewinnung von autologem gerinnungsaktiven Frischplasma,
liposomverpackte Gemische hämostaseologisch aktiver Oberflächenrezeptoren der Thrombozyten
oder inhalativ applizierbare Liposome mit Thrombomodulin sowie sense- und antisense-
Oligonukleotide für Gewebefaktor.
Abstract
Recent studies in humans have shown that tissue factor on the surface of endothelial
cells, monocytes, or subendothelial structures sparks plasmatic coagulation. In vivo,
there is no functional separation of an “endogenous” and “exogenous” pathway of the
coagulation cascade. However, global laboratory tests run along such pathways due
to preincubation with specific activators and, hence, allow localization of inherited
coagulation defects. Coagulation inhibitors such as antithrombin or activated protein
C are accelerated in their activity by cell surface glycoproteins and almost completely
inactivate procoagulant activity in the microcirculation. Antithrombin binds to endothelial
glycosaminoglycans and then significantly increases anticoagulant activity. Protein
C is activated by the thrombin-thrombomodulin-complex and inactivates factors V a
and VIII a, respectively. Additionally, activated protein C has a profibrinolytic
effect. Both systems physiologically counteract the procoagulant transformation of
endothelial and monocyte cell surfaces which occurs in critically ill patients due
to induction of tissue factor, suppression of thrombomodulin, and removal of glycosaminoglycans
from the cell surface. The distinction of statical and dynamical coagulation disorders
is useful since statical disorders seldomly require therapeutic interventions although
global laboratory tests may continuously deteriorate. Dynamical disorders are symptoms
of an underlying disease, and consumption coagulopathy with disseminated fibrin deposition
and oozing occurs when coagulation turnover cannot be stopped. Antithrombin substitution
is a well documented therapeutic option along with fresh frozen plasma and erythrocyte
concentrate transfusion for blood substitution. Recent case reports in patients with
irreversible bleeding complications favour the application of a recombinant factor
VII concentrate. A rising perspective to decrease the use of heterologous blood and
blood products may be intraoperative plasma retransfusion. The quality of such plasma
undergoing consecutive filtration steps has to be clinically studied. The application
of a synthetic platelet substitute, the “plateletsome”, containing platelet glycoproteins
led to significantly improved haemostasis without generating systemic procoagulant
activity. In a far future, procoagulant cell surface transformation may be influenced
by topic application of inhaled thrombomodulin loaded liposomes or by sense or antisense
oligonucleotides inducing thrombomodulin expression or suppressing tissue factor expression,
respectively.
Schlüsselwörter
Blutgerinnung - Blutung - Gerinnungsstörung - Gerinnungsfaktoren - perioperatives
Management - Verbrauchskoagulopathie - Transfusion
Key words
Bleeding - coagulation - coagulation disorders - coagulation factors - perioperative
blood management - transfusion
Literatur
- 1
Altieri D C, Morrissey J H, Edgington T S.
Adhesive receptor Mac-1 coordinates the activation of factor X on stimulated cells
of monocytic and myeloid differentiation: an alternative initiation of the coagulation
protease cascade.
Proc Natl Acad Sci USA.
1988;
85
7462-7466
- 2
Amiral J, Bridey F, Wolf M, Boyer- Neumann C, Fressinaud E, Vissac A M, Peynaud-Debayle E,
Dreyfus M, Meyer D.
Antibodies to macromolecular platelet factor 4 - heparin complexes in heparin-induced
thrombocytopenia: a study of 44 cases.
Thromb Haemostas.
1995;
73
21-28
- 3
Bach R, Gentry R, Nemerson Y.
Factor VII binding to tissue factor in reconstituted phospholipid vesicles: induction
of cooperativity by phosphatidylserine.
Biochemistry.
1986;
25
4007-4020
- 4
Bernstein D.
Effectiveness of the recombinant factor VII a in patients with the coagulopathy of
advanced child’s B and C cirrhosis.
Semin Thromb Hemost.
2000;
26
437-438
- 5
Boldt J, Zickmann B, Ballesteros M, Oehmke S, Stertmann F, Hempelmann G.
Influence of acute preoperative plasmapheresis on platelet function in cardiac surgery.
J Cardiothorac Vasc Anesth.
1993;
7
4-9
- 6
Canonico A E, Conary J T, Meyrick B O, Brigham K L.
Aerosol and intravenous transfection of human alpha 1-antitrypsin gene to lungs of
rabbits.
Am J Respir Cell Mol Biol.
1994;
10
24-29
- 7
Conway E M, Rosenberg R D.
Tumor necrosis factor suppresses transscription of thrombomodulin gene in endothelial
cells.
Mol Cell Biol.
1988;
8
5588-5592
- 8
Dahlbäck B.
Activated protein C resistance and thrombosis: molecular mechanisms of hypercoagulable
state due to FVR506Q mutation.
Semin Thromb Hemost.
1999;
25
273-289
- 9
Edwards E L, Rickles F R.
The role of leucocytes in the activation of blood coagulation.
Semin Hematol.
1992;
29
202-212
- 10
Ehrmann M E, Jaffe E A.
Prostacyclin (PGI2) inhibits the development in human platelets of ADP and arachidonic acid-induced
shape change and procoagulant activity.
Prostaglandins.
1980;
20
1103-1109
- 11
Esmon C T, Owen W G.
Identification of an endothelial cell cofactor for thrombin-catalyzed activation of
protein C.
Proc Natl Acad Sci USA.
1981;
78
2249-2252
- 12
Fielding R M.
The use of inhaled liposome formulations for drug delivery to the lungs and systemic
circulation.
Proc West Pharmacol Soc.
1989;
32
103-106
- 13
Galvin J B, Kurosawa S, Moore K, Esmon C T, Esmon N L.
Reconstitution of rabbit thrombomodulin into phospholipid vesicles.
J Biol Chem.
1987;
262
2199-2205
- 14
Garry B, Lisman S, Wurm W H.
Intraoperative reinfusion of whole blood using a new autoinfusion device.
Can J Anaesth.
1993;
40
791-795
- 15
Gregory S A, Morrissey J H, Edgington T S.
Regulation of tissue factor gene expression in the monocyte procoagulant response
to endotoxin.
Mol Cell Biol.
1989;
9
2752-2755
- 16 Holmsen H. Biochemistry and function of platelets. Composition of platelets. In:
Williams WJ, Beutler E, Erslev AJ, Lichtman MA (Hrsg). Hematology. McGraw Hill, New
York 1991; 1182-1200
- 17
Horie S, Ishii H, Kazama M.
Heparin-like glycosaminoglycan is a receptor for antithrombin III - dependent but
not thrombin-dependent prostacyclin production in human endothelial cells.
Thromb Res.
1990;
59
895-904
- 18
Howdieshell T R, Gay M, DiPiro J T, Mooney S, Duvall R, Eckles S, Baisden R.
Heparin versus citrate regional anticoagulation during autotransfusion in a porcine
intra-abdominal hemorrhage model.
Am Surg.
1997;
63
1014-1018
- 19
Kashima I, Ueda T, Shimizu H, Mitsumaru A, Tsutsumi K, Iino Y, Enoki C, Koizumi K,
Kawada S.
Efficacy of autologous platelet-rich plasma in thoracic aortic aneurysm surgery.
Jpn J Thorac Cardiovasc Surg.
2000;
48
708-712
- 20
Langer R.
Drug delivery. Drugs on target.
Science.
2001;
293
58-59
- 21
Lim T K, Bloomfield V A, Nelsestuen G L.
Structure of the prothrombin- and blood clotting factor X-membrane complexes.
Biochemistry.
1977;
16
4177-4181
- 22
Mann K G, Krishnaswamy S, Lawson J H.
Surface-dependent hemostasis.
Semin Hematol.
1992;
29
213-226
- 23
Marcum J A, McKenney J B, Rosenberg R D.
Acceleration of thrombin-antithrombin complex formation in rat hindquarters via heparin-like
molecules bound to the endothelium.
J Clin Invest.
1984;
74
341-345
- 24
Marcum J A, Rosenberg R D.
Anticoagulantly active heparan sulfate proteoglycan and the vascular endothelium.
Semin Thromb Hemost.
1987;
13
464-474
- 25
Menges T, Welters I, Wagner R M, Boldt J, Dapper F, Hempelmann G.
The influence of acute preoperative plasmapheresis on coagulation tests, fibrinolysis,
blood loss and transfusion requirements in cardiac surgery.
Eur J Cardiothorac Surg.
1997;
11
557-563
- 26
Monroe D M, Hoffman M, Allen G A, Roberts H R.
The factor VII-platelet interplay: effectiveness of recombinant factor VIIa in the
treatment of bleeding in severe thrombocytopathia.
Semin Thromb Hemost.
2000;
26
373-377
- 27
Moore K L, Andreoli S P, Esmon N L, Esmon C T, Bang N U.
Endotoxin enhances tissue factor and suppresses thrombomodulin expression of human
vascular endothelium in vitro.
J Clin Invest.
1987;
79
124-130
- 28
Mortelmans Y, Vermaut G, Van Aken H, Goossens W, Boogaerts M.
Quality of washed salvaged red blood cells during total hip replacement: a comparison
between the use of heparin and citrate as anticoagulants.
Anesth Analg.
1994;
79
357-363
- 29
Nakamura K, Okamoto M, Akioka K, Matsuyama M, Yoshimura R, Ushigome H, Kadotani Y,
Ohmori Y, Yoshimura N.
Effect of antisense oligonucleotides for tissue factor on hepatic ischemia-reperfusion
injury in the rat.
Transplant Proc.
2001;
33
3707-3708
- 30
Niewiarowski S, Thomas D P.
Platelet factor 4 and adenosine diphosphate release during human platelet aggregation.
Nature.
1969;
222
1269-1272
- 31
Osterud B, Rapaport S I.
Activation of factor IX by the reaction product of tissue factor and factor VII: additional
pathway for initiating blood coagulation.
Proc Natl Acad Sci USA.
1977;
74
5260-5264
- 32
Ostrovsky L, Woodman R C, Payne D, Teoh D, Kubes P.
Antithrombin III prevents and rapidly reverses leukocyte recruitment in ischemia/reperfusion.
Circulation.
1997;
96
2302-2310
- 33
Prescott S M, Zimmermann G A, McIntyre T M.
Platelet-activating factor.
J Biol Chem.
1990;
265
17 381-17 384
- 34
Rosenberg R D, Bauer K A.
Thrombosis in inherited deficiencies of antithrombin, protein C, and protein S.
Hum Pathol.
1987;
18
253-262
- 35
Rybak M E, Renzulli L A.
A liposome based platelet substitute, the plateletsome, with hemostatic efficacy.
Biomater Artif Cells Immobilization Biotechnol.
1993;
21
101-118
- 36
Sakata Y, Curriden S, Lawrence D, Griffin J H, Loskutoff D J.
Activated protein C stimulates the fibrinolytic activity of cultured endothelial cells
and decreases antiactivator activity.
Proc Natl Acad Sci USA.
1985;
82
1121-1125
- 37
Scherer R, Kabatnik M, Erhard J, Peters J.
The influence of antithrombin III substitution to supra-normal activities on systemic
procoagu-lant turnover in patients with end-stage chronic liver disease.
Intensive Care Med.
1997;
23
1150-1158
- 38
Scherer R, Paar D, Stöcker L, Kox W.
Diagnose und Therapie pathologischer Gerinnungsaktivierungen.
Anästhesist.
1994;
43
347-354
- 39
Scherer R, Pulletz S.
Consequences of haemostasis disorders on anaesthetic management.
Current Opinion in Anesthesiology.
1999;
12
349-352
- 40
Scherer R, Schmidt U, Paar D, Kox W.
Effects of prostacyclin (PGI2) substitution on systemic procoagulant turnover and cardiorespiratory variables in
experimental hypercoagulability.
Haemostasis.
1997;
27
16-24
- 41 Scherer R. Anästhesiologie - ein handlungsorientiertes Lehrbuch. Thieme Verlag
Stuttgart 2000; 1. Aufl: 151-152
- 42
Stephens A C, Rivers R P.
Suppression of human monocyte tissue factor synthesis by antisense oligodeoxynucleotide.
Thromb Res.
1997;
85
387-398
- 43
Stern E M, Esposito C, Gerlach H, Gerlach M, Ryan J, Handley D, Nawroth P.
Endothelium and regulation of coagulation.
Diabetes Care.
1991;
14
160-166
- 44
Triulzi D J, Gilmor G D, Ness P M, Baumgartner W A, Schultheis L W.
Efficacy of autologous fresh whole blood or platelet-rich plasma in adult cardiac
surgery.
Transfusion.
1995;
35
627-634
- 45
Trubetskoy V S, Torchilin V P, Kennel S, Huang L.
Cationic liposomes enhance targeted delivery and expression of exogenous DNA mediated
by N-terminal modified poly(L-lysine)-antibody conjugate in mouse lung endothelial
cells.
Biochim Biophys Acta.
1992;
1131
311-313
- 46
Uchiba M, Okajima K.
Antithrombin III (AT III) prevents LPS-induced pulmonary vascular injury: novel biological
activity of AT III.
Semin Thromb Hemost.
1997;
23
583-590
- 47
Van’t Veer C, Mann K G.
The regulation of the factor VII-dependent coagulation pathway: rationale for the
effectiveness of recombinant factor VII a in refractory bleeding disorders.
Semin Thromb Hemost.
2000;
26
367-372
- 48
Vane J R, Änggard E E, Botting R M.
Regulatory functions of the vascular endothelium.
N Engl J Med.
1990;
323
27-36
- 49
Verstraete M, Zoldhelyi P.
Novel antithrombotic drugs in development.
Drugs.
1995;
49
856-884
- 50
Walker F J, Fay P J.
Regulation of blood coagulation by the protein C system.
FASEB J.
1992;
6
2561-2567
- 51
Weiss H J, Turitto V T.
Prostacyclin (prostaglandin I2, PGI2) inhibits platelet adhesion and thrombus formation on subendothelium.
Blood.
1979;
53
244-249
- 52
Yamauchi T, Umeda F, Inoguchi T, Nawata H.
Antithrombin III stimulates prostacyclin production by cultured aortic endothelial
cells.
Biochem Biophys Res Commun.
1989;
163
1404-1411
- 53
Zur M, Nemerson Y.
Kinetics of factor IX activation via the extrinsic pathway. Dependence of Km on tissue
factor.
J Biol Chem.
1980;
255
5703-5707
Prof. Dr. med. Ralf U. Scherer
Zentrale Abteilung für Anästhesiologie und Intensivmedizin · Evangelisches und Johanniter
Klinikum Duisburg/Dinslaken/Oberhausen gGmbH
Fahrner Str. 133-135
47169 Duisburg
URL: http://www.ejk.de