Int J Sports Med 2003; 24(4): 298-303
DOI: 10.1055/s-2003-39504
Training & Testing
© Georg Thieme Verlag Stuttgart · New York

Comparison of MTI Accelerometer Cut-Points for Predicting Time Spent in Physical Activity

S.  J.  Strath1 , D.  R.  Bassett1  Jr. , A.  M.  Swartz1
  • 1Department of Health and Exercise Science, The University of Tennessee, Knoxville, Tennessee, USA
Further Information

Publication History

Accepted after revision: January 8, 2003

Publication Date:
04 June 2003 (online)

Preview

Abstract

The purpose of this study was to establish the accuracy of five published accelerometer regression equations that predict time spent in different intensity classifications during free-living activities. Ten participants completed physical tasks in a field setting for a near-continuous 5 - 6 h-period while oxygen uptake and accelerometer data were collected. The amount of time spent in resting/light, moderate and hard activity was computed from 3 and 6 MET cut-points associated with five existing regression formulas relating accelerometer counts × min-1 to energy expenditure. The Freedson cut-points over-estimated resting/light activity by 34 min (13 %) and under-estimated moderate activity by 38 min (60 %). The Hendelman cut-points for all activities underestimated resting/light activity by 77 min (29 %), and overestimated moderate activity by 77 min (120 %). The Hendelman cut-points developed from walking activities over-estimated resting/light activity by 37 min (14 %) and under-estimated moderate activity by 38 min (60 %). Estimates from the Swartz cut-points for estimating time spent in resting/light, moderate and hard intensity activity were not different from the criterion measure. The Nichols cut-points over-estimated resting/light activity by 31 min (12 %) and under-estimated moderate activity by 35 min (55 %). Even though the Swartz method did not differ from measured time spent in moderate activity on a group basis, on an individual basis, large errors were seen. This was true for all regression formulas. These errors highlight some of the limitations to using hip-mounted accelerometers to reflect physical activity patterns. The finding that different accelerometer cut-points gave substantially different estimates of time spent data has important implications for researchers using accelerometers to predict time spent in different intensity categories.

References

  • 1 Ainsworth B E, Bassett DR Jr, Strath S J, Swartz A M, O’Brien W L, Thompson R W, Jones D A, Macera C A, Kimsey C D. Comparison of three methods for measuring the time spent in physical activity.  Med Sci Sports Exerc. 2000;  32 S457-S464
  • 2 Bassett DR Jr, Ainsworth B E, Swartz A M, Strath S J, O’Brien W L, King G A, Howley E T. Validity of four motion sensors in measuring moderate intensity physical activity.  Med Sci Sports Exerc. 2000;  32 S471-S480
  • 3 Durstine J L, Haskell W L. Effects of exercise training on plasma lipids and lipoproteins.  ESSR. 1994;  22 477-522
  • 4 Freedson P, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer.  Med Sci Sports Exerc. 1998;  30 777-781
  • 5 Helmrich S P, Ragland D R, Leung W R, Paffenbarger RS Jr. Physical activity and reduced occurrence of non-insulin dependent diabetes mellitus.  N Eng J Med. 1991;  325 147-152
  • 6 Hendelman D, Miller K, Bagget C, Debold E, Freedson P. Validity of accelerometry for the assessment of moderate intensity physical activity in the field.  Med Sci Sports Exerc. 2000;  32 S442-S449
  • 7 Lee I M. Physical activity, fitness and cancer. In: Bouchard C, Shepard RJ, Stephens T (eds). Physical Activity, Fitness, and Health Champaign, IL; Human Kinetics Inc. 1994: 814-831
  • 8 Leenders N Y, Sherman W M, Nagaraja H N, Kien C L. Evaluation of methods to assess physical activity in free-living conditions.  Med Sci Sports Exerc. 2001;  33 1233-1240
  • 9 McLaughlin J E, King G A, Howley E T, Bassett DR Jr, Ainsworth B E. Validation of the Cosmed K4b2 portable metabolic system.  Int J Sports Med. 2001;  22 280-283
  • 10 Morris J N, Clayton D G, Everitt M G, Semmence A M, Burgess E H. Exercise in leisure time: Coronary attack and death rates.  Br Heart J. 1990;  63 325-334
  • 11 Nichols J F, Morgan C G, Chabot L E, Sallis JF, Calfas K J. Assessment of physical activity with the Computer Science and Applications, Inc. accelerometer: Laboratory versus field validation.  RQES. 2000;  71 36-43
  • 12 Paffenbarger RS Jr, Wing A L, Hyde R T, Jung D L. Physical activity and incidence of hypertension in college alumni.  Am J Epidemiol. 1983;  117 245-257
  • 13 Paffenbarger RS Jr, Hyde R T, Wing A L, Hsieh C. Physical activity, all-cause mortality, and longevity of college alumni.  N Eng J Med. 1986;  314 605-613
  • 14 Pate R, Pratt M, Blair S, Haskell W, Macera C, Bouchard C, Buchner D, Ettinger W, Heath G, King A, Kriska A, Leon A, Marcus B, Morris J, Paffenbarger R Jr, Patrick K, Pollock M, Rippe J, Sallis J, Wilmore J. Physical activity and public health.  JAMA. 1995;  273 402-407
  • 15 Strath S J, Bassett DR Jr, Swartz A M, Thompson D L. Simultaneous heart rate-motion sensor technique to estimate energy expenditure.  Med Sci Sports Exerc. 2001;  33 2118-2123
  • 16 Swartz A M, Strath S J, Bassett DR Jr, O’Brien W L, King G A, Ainsworth B E. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites.  Med Sci Sports Exerc. 2000;  32 S450-S456
  • 17 U.S. Department of Health and Human Services .Physical Activity and Health: A Report of the Surgeon General. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion,. 1996: 3

D. R. Bassett, Jr.

Department of Health and Exercise Science

The University of Tennessee · 1914 Andy Holt Avenue · Knoxville, TN 37996-2700 · USA ·

Phone: (865) 974-8883

Fax: (865) 974-8981

Email: dbassett@utk.edu