Exp Clin Endocrinol Diabetes 2003; 111(2): 104-110
DOI: 10.1055/s-2003-39238
Article

J. A. Barth Verlag in Georg Thieme Verlag Stuttgart · New York

Impairment of Cutaneous Arteriolar 0.1 Hz Vasomotion in Diabetes

M. F. Meyer 1 , C. J. Rose 1 , J.-O. Hülsmann 1 , H. Schatz 1 , M. Pfohl 1
  • 1Department of Internal Medicine, University Clinic Bergmannsheil, Ruhr-University Bochum, Germany
Further Information

Publication History

Received: August 12, 2002 First decision: September 13, 2002

Accepted: October 18, 2002

Publication Date:
14 May 2003 (online)

Abstract

Arteriolar vasomotion, the cyclic contraction/dilation of terminal arterioles, is disordered in diabetes. The aim of the present study was to characterize the impairment of cutaneous vasomotion in type 1 and type 2 diabetes, especially with regard to the influence of metabolic control and to the response to shear stress. Twenty type 1 and 23 type 2 diabetic patients were investigated. Vasomotion waves were recorded in single capillaries at the dorsal middle phalangeal area of the left ring finger during rest, after warming the skin temperature to 33 °C, and after 3-min arterial occlusion by means of laser Doppler anemometry. Suprasystolic occlusion caused an increase in amplitudes of vasomotion only in type 1 diabetic patients (0.12 ± 0.04 mm/s vs. 0.36 ± 0.06 mm/s, p = 0.001). In type 1 but not in type 2 diabetic patients, both systolic and diastolic blood pressure correlated positively with amplitudes of resting vasomotion (r = 0.62, p = 0.002 and r = 0.65, p = 0.001, respectively). Amplitudes of vasomotion after warming up at frequencies of 5 - 8 cycles per minute (0.08 - 0.13 Hz) correlated inversely with the levels of glycated hemoglobin (HbA1c) (r = - 0.56, p = 0.005) only in type 1 diabetic patients. In conclusion, we found suprasystolic occlusion and increasing blood pressure to provoke vasomotion with a concomitant decrease in effective vascular resistance only in type 1 diabetic patients. The impaired vasomotion response to shear stress in type 2 diabetes might favour the development of skin lesions and arterial hypertension. Insufficient glycemic control seems to be an important factor in the pathogenesis of impaired vasomotion in type 1 diabetes.

References

  • 1 Benbow S J, Pryce D W, Noblett K, Mac Farlane I A, Friedmann P S, Williams G. Flow motion in peripheral diabetic neuropathy.  Clin Sci. 1995;  88 191-196
  • 2 Berg B R, Cohen K D, Sarelius I H. Direct coupling between blood flow and metabolism at the capillary level in striated muscle.  Am J Physiol. 1997;  272 H2693-H2700
  • 3 Bernardi L, Rossi M, Leuzzi S, Mevio E, Fornasari G, Calciati A, Orlandi C, Fratino P. Reduction of 0. 1 Hz microcirculatory fluctuations as evidence of sympathetic dysfunction in insulin-dependent diabetes.  Cardiovasc Res. 1997;  34 185-191
  • 4 Bouskela E, Cyrino F Z, Wiernsperger N. Effects of insulin and the combination of insulin plus metformin (glucophage) on microvascular reactivity in control and diabetic hamsters.  Angiology. 1997;  48 503-514
  • 5 Bucala R, Tracey K J, Cerami A. Advanced glycosilation end products quench nitric oxide and mediate defective endothelium-dependent vasodilation in experimental diabetes.  J Clin Invest. 1991;  87 432-438
  • 6 Buerk D G, Riva C É. Vasomotion and spontaneous low-frequency-oscillations in blood flow and nitric oxide in cat optic nerve head.  Microvasc Res. 1998;  55 103-112
  • 7 Ellis C G, Wrigley S M, Groom A C. Heterogeneity of red blood cell perfusion in capillary networks supplied by a single arteriole in resting skeletal muscle.  Circ Res. 1994;  75 357-368
  • 8 Hawthorne G C, Bartlett K, Hetherington C S, Alberti K G. The effect of high glucose on polyol pathway activity and myoinositol metabolism in cultured human endothelial cells.  Diabetologia. 1989;  32 163-166
  • 9 Intaglietta M. Arteriolar vasomotion: normal physiological activity or defense mechanism?.  Diabetes Metab. 1988;  14 489-494
  • 10 Intaglietta M. Vasomotion and flowmotion: physiological mechanisms and clinical evidence.  Vasc Med Rev. 1990;  1 101-112
  • 11 Meyer J U, Borgstrom P, Lindbom L, Intaglietta M. Vasomotion patterns in skeletal muscle arterioles during changes in arterial pressure.  Microvasc Res. 1988;  35 193-203
  • 12 Meyer M F, Pfohl M, Schatz H. Assessment of microcirculatory alterations in diabetic patients by means of capillaroscopy and laser Doppler anemometry.  Med Klin. 2001;  96 71-77
  • 13 Meyer M F, Pfohl M, Schatz H. Correlations between morphological and functional microcirculatory alterations in diabetes and the impact of metabolic control and disease duration.  Microvasc Res. 2000;  59 186-189
  • 14 Meyer M F, Schatz H. Influence of metabolic control and duration of disease on microvascular dysfunction in diabetes assessed by laser Doppler anemometry.  Exp Clin Endocrinol Diabetes. 1998;  106 395-403
  • 15 Parthimos D, Edwards D H, Griffith T M. Comparison of chaotic and sinusoidal vasomotion in the regulation of microvascular flow.  Cardiovasc Res. 1996;  31 388-399
  • 16 Pohl U, De Wit C, Gloe T. Large arterioles in the control of blood flow: role of endothelium-dependent dilation.  Acta Physiol Scand. 2000;  168 505-510
  • 17 Pohl U, De Wit C. A unique role of NO in the control of blood flow.  News Physiol Sci. 1999;  14 74-80
  • 18 Renaudin C, Michoud E, Lagarde M, Wiernsperger N. Impaired microvascular responses to acute hyperglycemia in type I diabetic rats.  J Diabetes Complications. 1999;  13 39-44
  • 19 Renaudin C, Michoud E, Rapin J R, Lagarde M, Wiernsperger N. Hyperglycemia modifies the reaction of microvessels to insulin in rat skeletal muscle.  Diabetologia. 1998;  41 26-33
  • 20 Rendell M, Bamisedun O. Diabetic cutaneous microangiopathy.  Am J Med. 1992;  93 611-618
  • 21 Stansberry K B, Shapiro S A, Hill M A, McNitt P M, Meyer M D, Vinik A I. Impaired peripheral vasomotion in Diabetes.  Diabetes Care. 1996;  19 715-721
  • 22 Sweeney T E, Sarelius I H. Arteriolar control of capillary cell flow in striated muscle.  Circ Res. 1989;  64 112-120
  • 23 Tesfamariam B, Brown M L, Cohen R A. Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C.  J Clin Invest. 1991;  87 1643-1648
  • 24 Wilkin J K. Periodic cutaneous blood flow during postocclusive reactive hyperemia.  Am J Physiol. 1986;  250 765-768
  • 25 Wilkin J K. Poiseuille, periodicity, and perfusion: rhythmic oscillatory vasomotion in the skin.  J Invest Dermatol. 1989;  93 113-118

Dr. Martin F. Meyer

Department of Internal Medicine
University Clinic Bergmannsheil

Bürkle-de-la-Camp-Platz 1

44789 Bochum

Germany

Phone: + 49-234-3026400

Fax: + 49-234-3026403

Email: Martin.Meyer-2@ruhr-uni-bochum.de

    >