Abstract
Background: Stereotactic procedures employing frame-based systems and utilizing pre-operative MR or CT have several shortcomings such as long procedure time, patient discomfort and transport, poor fail-safe capabilities and targeting inaccuracies due to brain shift. Conducting all procedural steps in an interventional MRI has the potential of alleviating some of these deficiencies.
Methods: A stereotactic system consisting of a skull-mounted mechanical positioning device and customized navigation software has been developed. The accuracy of this system was tested within an interventional MRI employing a skull phantom.
Results: The mean distance between the targets hit and the planned target coordinates was 0.70 mm ± 0.3 mm with a maximum distance of 1.3 mm.
Interpretation: The results indicate that the proposed stereotactic system can be used for stereotactic procedures in the interventional MRI.
Key words
Magnetic Resonance Imaging - Image-Guided Surgery - Frameless Stereotaxy - Instrumentation - Stereotactic Surgery
1
Alexander III E, Kooy H M, van Herk M, Schwartz M, Barnes P D, Tarbell N, Mulkern R V, Holupka E J, Loeffler J S.
Magnetic resonance image-directed stereotactic neurosurgery: Use of image fusion with computerized tomography to enhance spatial accuracy.
J Neurosurg.
1995;
83
271-276
2
Alexander III E, Moriarty T M, Kikinis R, Jolesz F A.
Innovations in minimalism: Intraoperative MRI.
Clinical Neurosurgery.
1996;
338
52
3
Berry E, Brown J M, Connell M, Craven C M, Efford N D, Radjenovic A, Smith M A.
Preliminary experience with medical applications of rapid prototyping by selective laser sintering.
Med Engl Phys.
1997;
19(1)
90-96
4
Carter D A, Parsai E I, Ayyangar K M.
Accuracy of magnetic resonance imaging stereotactic coordinates with the Cosman-Roberts-Wells frame. Stereotact Funct.
Neurosurg.
1999;
72(1)
35-46
5
Cohen D S, Lustgarten J H, Miller E, Khandji A G, Goodman R R.
Effects of coregistration of MR to CT images on MR stereotactic accuracy.
J Neurosurg.
1995;
82(5)
772-779
6
Galloway Jr R L, Maciunas R J, Latimer J W.
The accuracies of four stereotactic frame systems: an independent assessment.
Biomed Instrum Technol.
1991;
25(6)
457-460
7
Grunert P.
Accuarcy of stereotactic coordinate transformation using a localisation frame and computed tomographic imaging. Part II. Analysis of matrix-based coordinate transformation.
Neurosurg Rev.
1999;
22(4)
188-203
8
Hirschberg H, Samset E.
Intraoperative image-directed dye marking of tumor margins.
Minim Invasive Neurosurg.
1999;
42(3)
123-127
9
Levy R A, Guduri S, Crawford R H.
Preliminary experience with selective laser sintering models of the human temporal bone.
AJNR Am J Neuroradiol.
1994;
15(3)
473-477
10
Maciunas R J, Galloway Jr R L, Latimer J W.
The application accuracy of stereotactic frames.
Neurosurgery.
1994;
35(4)
682-694
11
Moriarty T M, Kikinis R, Jolesz F A, Black P M, Alexander III E.
Magnetic resonance imaging therapy. Intraoperative MR imaging.
Neurosurgery Clinics of North America.
1996;
7(2)
323-331
12
Nabavi A, Black P M, Gering D T, Westin C F, Mehta V, Pergolizzi Jr R S, Ferrant M, Warfield S K, Hata N, Schwartz R B, Wells III W M, Kikinis R, Jolesz F A.
Serial intraoperative magnetic resonance imaging of brain shift.
Neurosurgery.
2001;
48(4)
787-797
13
Nauta H J.
Error assessment during “image guided” and “imaging interactive” stereotactic surgery.
Comput Med Imaging Graph.
1994;
18(4)
279-287
14
Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R.
Quantification of, and visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging.
Neurosurgery.
2000;
47(5)
1070-1079
15
Page R D, Miles J B.
Validation of CT targeting for functional stereotaxis with postoperative magnetic resonance imaging.
Br J Neurosurg.
1994;
8(4)
461-467
16
Samset E, Hirschberg H.
Neuronavigation in intraoperative MRI.
Computer Aided Surgery.
1999;
4
200-207
17
Samset E, Talsma A, Kintel M, Elle O J, Aurdal L, Hirschberg H, Fosse E.
A virtual environment for navigating and controlling intraoperative magnetic resonance images.
J Comput Aided Surg.
2002;
7
187-196
18
Starr P A, Vitek J L, DeLong M, Bakay R A.
Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus.
Neurosurgery.
1999;
44(2)
303-313
19
Suess O, Kombos T, Suess S, Stendel R, Pietilae T, Brock M.
The influence of intra-operative brain shift on continuous cortical stimulation during surgery in the motor cortex - an illustrative case report.
Acta Neurochir (Wien).
2001;
143(6)
621-623
20
Wirtz C R, Tronnier V M, Bonsanto M M, Knauth M, Staubert A, Albert F K, Kunze S.
Image-guided neurosurgery with intraoperative MRI: Update of frameless stereotaxy and radicality control.
Stereotact Funct Neurosurg.
1997;
68
39-43
E. Samset,M.Sc.
The Interventional Centre · Rikshospitalet
0027 Oslo
Norway ·
Telefon: +47-23-070-111
Fax: +47-23-070-110
eMail: eigil.samset@klinmed.uio.no