Semin Thromb Hemost 2003; 29(1): 107-120
DOI: 10.1055/s-2003-37945
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Gene Transfer as an Approach to Treating Hemophilia

Katherine A. High
  • William H. Bennett Professor of Pediatrics, University of Pennsylvania School of Medicine, Hematology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
Further Information

Publication History

Publication Date:
17 March 2003 (online)

ABSTRACT

Gene therapy is a novel area of therapeutics in which the active agent is a nucleic acid sequence rather than a protein or small molecule. Successful clinical applications of gene transfer have been limited to date because of shortcomings in the available gene delivery vehicles. The goal of gene transfer for hemophilia is to achieve sustained expression of factor (F) VIII or FIX at levels high enough to improve the symptoms of the disease. Hemophilia has proved to be an attractive model for those interested in gene transfer, and multiple gene transfer strategies are currently being investigated. So far, five different trials, three for hemophilia A and two for hemophilia B, have enrolled approximately 40 patients with severe hemophilia. This article summarizes the gene transfer strategies being investigated, the available preclinical data, and the early clinical results. In the past year, several groups have demonstrated sustained expression of clotting factors at levels of 5 to 10% of normal in large animal models of hemophilia. The goal of the ongoing clinical studies is to determine whether these results can safely be extended to humans.

REFERENCES

  • 1 Cavazzana-Calvo M, Hacein-Bey S, de Saint Basille G. et al . Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease.  Science . 2000;  288 669-672
  • 2 Aiuti A, Slavin S, Aker M. et al . Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning.  Science . 2002;  296 2410-2413
  • 3 Mount J D, Herzog R W, Tillson D M. et al . Sustained phenotype correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy.  Blood . 2002;  99 2670-2676
  • 4 Xu L, Sands M S, Gao C, Ponder K P. Retroviral vector-mediated expression of therapeutic levels of canine factor IX in adult and neonatal mice (Abst).  Mol Ther . 2002;  5 S157
  • 5 Couto L, Jian H, Scallan C. et al . Hemophilia A gene therapy in mouse and dog models using an AAV-FVIII vector (Abst).  Mol Ther . 2002;  5 S84
  • 6 Kyrle P A, Minar E, Hirschl M. et al . High plasma levels of factor VIII and the risk of recurrent venous thromboembolism.  N Engl J Med . 2000;  34 457-462
  • 7 van Kylckama Vlieg A, van der Linden K I, Bertina R M, Rosendaal F R. High levels of factor IX increase the risk of venous thrombosis.  Blood . 2000;  95 3678-3682
  • 8 Kundu R K, Sangiorgi F, Wu L Y. et al . Targeted inactivation of the coagulation factor IX gene causes hemophilia B in mice.  Blood . 1998;  92 168-174
  • 9 Bi L, Lawler A M, Antonarakis S E. et al . Targeted disruption of the mouse factor VIII gene: A model for hemophilia A.  Nat Genet . 1995;  10 119-121
  • 10 Lin H F, Maeda N, Smithies O, Straight D L, Stafford D W. A coagulation factor IX-deficient mouse model for human hemophilia B.  Blood . 1997;  90 3962-3966
  • 11 Wang L, Zoppe M, Hackeng T M. et al . A factor IX-deficient mouse model for hemophilia B gene therapy.  Proc Natl Acad Sci USA . 1997;  94 11563-11566
  • 12 Evans J P, Brinkhous K M, Brayer G D, Reisner H M, High K A. Canine hemophilia B resulting from a point mutation with unusual consequences.  Proc Natl Acad Sci USA . 1989;  86 10095-10099
  • 13 Mauser A E, Whitney K M, Lothrop Jr D C. A deletion mutation causes hemophilia B in Lhasa Apso dogs.  Blood . 1996;  88 3451-3455
  • 14 Evans J P, Watzke H H, Ware J L, Stafford D W, High K A. Molecular cloning of a cDNA encoding canine factor IX.  Blood . 1989;  74 207-212
  • 15 Cameron C, Notley C, Hoyle S. et al . The canine factor VIII cDNA and 5′ flanking sequence.  Thromb Haemost . 1998;  79 317-322
  • 16 Wu S M, Stafford D W, Ware J L. Deduced amino acid sequence of mouse blood-coagulation factor IX.  Gene . 1990;  86 275-278
  • 17 MASAC Recommendation #120: MASAC Recommendations for Conducting Gene Therapy Clinical Trials in Persons with Bleeding Disorders. New York: National Hemophilia Foundation; 2002. (On-line) Available: www.hemophilia.org/ programs/masac/masac/masac120htm
  • 18 Green P M, Montandon A J, Bentley D R, Giannelli F. Genetics and molecular biology of haemophilias A and B.  Blood Coagul Fibrinolysis . 1991;  2 539-565
  • 19 Pastore L, Morral N, Zhou H. et al . Use of a liver-specific promoter reduces immune response to the transgene in adenoviral vectors.  Hum Gene Ther . 1999;  10 1773-1781
  • 20 Herzog R W, Mount J D, Arruda V R, High K A, Lothrop Jr D C. Muscle-directed gene transfer and transient immune suppression result in sustained partial correction of canine hemophilia B caused by a null mutation.  Mol Ther . 2001;  4 192-199
  • 21 Nathwani A C, Davidoff A, Hanawa H. et al . Factors influencing in-vivo transduction by recombinant adeno-associated viral vectors expressing the human factor IX cDNA.  Blood . 2001;  97 1258-1265
  • 22 Ge Y, Powell S, Van Roey M, McArthur J G. Factors influencing the development of an anti-factor IX (FIX) immune response following administration of adeno-associated virus-FIX.  Blood . 2001;  97 3733-3737
  • 23 Nathwani A C, Davidoff A M, Hanawa H. et al . Sustained high level expression of human factor IX (hFIX) after liver-targeted delivery of recombinant adeno-associated virus encoding the hFIX gene in rhesus macaques.  Blood . 2002;  100 1662-1669
  • 24 Ahmed M M, Multimer D J, Elias E. et al . A combined management protocol for patients with coagulation disorders infected with hepatitis C virus.  Br J Haematol . 1996;  95 383-388
  • 25 Aledort L P, Levine P H, Hilgartner M. et al . A study of liver biopsies and liver disease among hemophiliacs.  Blood . 1985;  66 367-372
  • 26 Hanley J P, Jarvis L M, Andrews J. et al . Investigation of chronic hepatitis C infection in individuals with haemophilia: assessment of invasive and non-invasive methods.  Br J Haematol . 1996;  94 159-165
  • 27 Kay M A, Rothenberg S, Landen C N. et al . In vivo gene therapy of hemophilia B: sustained partial correction in factor IX-deficient dogs.  Science . 1993;  262 117-119
  • 28 Bosch A, McCray P B, Chang S MW. et al . Proliferation induced by keratinocyte growth factor enhances in vivo retroviral-mediated gene transfer to mouse hepatocytes.  J Clin Invest . 1996;  98 2683-2687
  • 29 Xu L, Haskins M E, Melniczek J R. et al . Transduction of hepatocytes after neonatal delivery of a Moloney murine leukemia virus based retroviral vector results in long-term expression of beta-glucuronidase in mucopolysaccharidosis VII dogs.  Mol Ther . 2002;  5 141-153
  • 30 van den Driessche T, Vanslembrouck V, Goovaerts I. et al . Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice.  Proc Natl Acad Sci USA . 1999;  96 10379-10384
  • 31 Bowling W M, Kennedy S C, Cai S R. et al . Portal branch occlusion safely facilitates in vivo retroviral vector transduction of rat liver.  Hum Gene Ther . 1996;  10 2113-2121
  • 32 McCormack J E, Edwards W, Sensintaffer J. et al . Factors affecting long-term expression of a secreted transgene product after intravenous administration of a retroviral vector.  Mol Ther . 2001;  3 516-525
  • 33 Powell J S, Ragni M V, White G C. et al . Results from one year follow up of a phase I trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion (Abst).  Blood . 2001;  98 693a
  • 34 Greengard J S, Jolly D J. Animal testing of retroviral-mediated gene therapy for factor VIII deficiency.  Thromb Haemost . 1999;  82 555-561
  • 35 Cai S-R, Kennedy S C, Bowling W M, Flye M W, Ponder K P. Therapeutic levels of human protein C in rats after retroviral vector-mediated hepatic gene therapy.  J Clin Invest . 1998;  101 2831-2841
  • 36 Department of Health and Human Services, National Institutes of Health Recombinant DNA Advisory Committee. Minutes of Meeting. Bethesda, Maryland; March 11-12, 1999. (On-line) Available: www4.od.nih.gov/oba/rac/minutes/3-99RAC.htm
  • 37 Biological Response Modifiers Advisory Committee. Twenty-eighth Meeting. Bethesda, Maryland; 2000. (On-line) Available: www.fda.gov/ohrms/dockets/ac/cber00.htm
  • 38 Frankel M, Chapman A. Human inheritable genetic modificatons: assessing scientific, ethical, religious and policy issues. 2000 (On-line). Available: http://www.aaas.org/spp/dspp/ sfrl/germline/main.htm
  • 39 Roehl H H, Leibbrandt M E, Greengard J S. et al . Analysis of testes and semen from rabbits treated by intravenous injection with a retroviral vector encoding the human factor VIII gene; no evidence of germ line transduction.  Hum Gene Ther . 2000;  11 2529-2540
  • 40 Xiao X, Li J, Samulski R J. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector.  J Virol . 1996;  70 8098-8108
  • 41 Kessler P D, Podsakoff G M, Chen X. et al . Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein.  Proc Natl Acad Sci USA . 1996;  93 14082-14087
  • 42 Herzog R, Hagstrom N, Kung S. et al . Stable gene transfer and expression of human FIX following intramuscular injection of recombinant AAV.  Proc Natl Acad Sci USA . 1997;  94 5804-5809
  • 43 Snyder R O, Miao C H, Patijn G A. et al . Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors.  Nat Genet . 1997;  16 270-276
  • 44 Herzog R, Yang E, Couto L. et al . Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector.  Nat Med . 1999;  5 56-63
  • 45 Snyder R O, Miao C, Meuse L. et al . Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors.  Nat Med . 1999;  5 64-70
  • 46 Wagner J A, Moran M L, Messner A H. et al . A phase I/II study of tgAAV-CF for the treatment of chronic sinusitis in patients with cystic fibrosis.  Hum Gene Ther . 1998;  9 889-909
  • 47 Wagner J A, Reynolds T, Moran M L. et al . Efficient and persistent gene transfer of AAV-CFTR in maxillary sinus.  Lancet . 1998;  351 1702-1703
  • 48 Arruda V R, Fields P A, Milner R. et al . Lack of germline transmission of vector sequences following systemic administration of recombinant AAV-2 vector in males.  Mol Ther . 2001;  4 586-592
  • 49 Kay M A, Manno C S, Ragni M V. et al . Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector.  Nat Genet . 2000;  24 257-261
  • 50 Carmen I H. A death in the laboratory: the politics of the Gelsinger aftermath.  Mol Ther . 2001;  3 425-428
  • 51 Schnell M A, Zhang Y, Tazelaar J. et al . Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors.  Mol Ther . 2001;  3 708-722
  • 52 Department of Health and Human Services, National Institutes of Health Recombinant DNA Advisory Committee. Minutes of Meeting. Bethesda, Maryland; December 8-10, 1999. (On-line) Available: www4.od.nih.gov/oba/rac/minutes/1299rac.pdf
  • 53 Manno C S, Chew A, Hutchison S. et al . AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B (in press).  Blood. 2003; 
  • 54 Arruda V R, Couto L, Leonard D. et al . Risk of inadvertent germline transmission of vector DNA following intravascular delivery of recombinant AAV vector (Abst).  Mol Ther . 2002;  5 S159
  • 55 Arruda V R, Hagstrom J N, Deitch J. et al . Posttranslational modifications of recombinant myotube-synthesized human factor IX.  Blood . 2001;  97 130-138
  • 56 Herzog R W, Fields P A, Arruda V R. et al . Influence of vector dose on factor IX-specific T and B cell responses in muscle-directed gene therapy.  Hum Gene Ther . 2002;  13 1281-1291
  • 57 Greelish J P, Su L T, Lankford E B. et al . Stable restoration of the sarcogylcan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated adeno-associated viral vector.  Nat Med . 1999;  5 439-443
  • 58 Arruda V R, Stedman H, Nichols T C. et al . Sustained correction of hemophilia B phenotype following intravascular delivery of AAV vector to skeletal muscle (Abst).  Mol Ther . 2002;  5 S157
  • 59 Xiao W, Chirmule N, Berta S C. et al . Gene therapy vectors based on adeno-associated virus type 1.  J Virol . 1999;  73 3994-4003
  • 60 Chao H, Liu Y, Rabinowitz J. et al . Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors.  Mol Ther . 2000;  2 619-623
  • 61 Heartlein M W, Roman V A, Jiang J-L. Long-term production and delivery of human growth hormone in vivo.  Proc Natl Acad Sci USA . 1994;  91 10967-10971
  • 62 Selden R F, Skoskiewicz M J, Howie K B, Russell P S, Goodman H M. Implantation of genetically engineered fibroblasts into mice: implications for gene therapy.  Science . 1987;  236 714-718
  • 63 Roth D A, Tawa N E, O'Brien J M, Treco D A, Selden R F. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A.  N Engl J Med . 2001;  344 1735-1742
  • 64 Wolff G, Worgall S, Van R N. et al . Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ.  J Virol . 1997;  71 624-629
  • 65 Worgall S, Wolff G, Falck-Pedersen E, Crystal R G. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration.  Hum Gene Ther . 1997;  8 37-44
  • 66 Zhang Y, Chirmule N, Gao G-P. et al . Acute cytokine response to systemic adenoviral vectors in mice is mediated by dendritic cells and macrophages.  Mol Ther . 2001;  3 697-707
  • 67 Yang Y P, Ertl H CJ, Wilson J M. MHC class I-restricted cytotoxic T-lymphocytes to viral-antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses.  Immunity . 1994;  1 433-442
  • 68 Yang Y P, Xiang Z Q, Ertl H CJ, Wilson J M. Up-regulation of class-I major histocompatibility complex antigens by interferon-gamma is necessary for T-cell mediated elimination of recombinant adenovirus-infected hepatocytes in vivo.  Proc Natl Acad Sci USA . 1995;  92 7257-7261
  • 69 Yang Y P, Wilson J M. Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4(+) CTLS in-vivo.  J Immunol . 1995;  155 2564-2570
  • 70 Kafri T, Morgan D, Krahl T. et al . Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy.  Proc Natl Acad Sci USA . 1998;  95 11377-11382
  • 71 Kay M A, Landen C N, Rothenberg S R. et al . In vivo hepatic gene therapy: complete albeit transient correction of factor IX deficiency in hemophilia B dogs.  Proc Natl Acad Sci USA . 1994;  91 2353-2357
  • 72 Lozier J N, Metzger M E, Donahue R E, Morgan R A. Adenovirus-mediated expression of human coagulation factor IX in the rhesus macaque is associated with dose-limiting toxicity.  Blood . 1999;  94 3968-3975
  • 73 Lozier J N, Csako G, Mondoro T H. et al . Toxicity of a first-generation of adenoviral vector in macaques.  Hum Gene Ther . 2002;  12 113-124
  • 74 Gallo-Penn A M, Shirley P S, Andrews J L. et al . Systemic delivery of an adenoviral vector encoding canine factor VIII results in short-term phenotypic correction, inhibitor development, and biphasic liver toxicity in hemophilia A dogs.  Blood . 2001;  86 107-113
  • 75 Parks R J, Chen L, Anton M. et al . A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal.  Proc Natl Acad Sci USA . 1996;  93 13565-13570
  • 76 Chen H-H, Mack L M, Kelly R. et al . Persistence in muscle of an adenoviral vector that lacks all viral genes.  Proc Natl Acad Sci USA . 1997;  94 1645-1650
  • 77 Morsy M A, Gu M, Motzel S. et al . An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene.  Proc Natl Acad Sci USA . 1998;  95 7866-7871
  • 78 Morral N, Parks R J, Zhou H. et al . High doses of a helper-dependent adenoviral vector yield supraphysiological levels of α1-antitrypsin with negligible toxicity.  Hum Gene Ther . 1998;  9 2709-2716
  • 79 Morral N, O'Neil W, Zhou H, Langston C, Beaudet A. Immune responses to reporter proteins and high viral dose limit duration of expression with adenoviral vectors: comparison of E2a wildtype and E2a deleted vectors.  Hum Gene Ther . 1997;  8 1275-1286
  • 80 Schiedner G, Morrall N, Parks R J. et al . Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity.  Nat Genet . 1998;  18 180-183
  • 81 Balagué C, Zhou J, Dai Y. et al . Sustained high-level expression of full-length human factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector.  Blood . 2000;  95 820-828
  • 82 Maione D, Wiznerowicz M, Delmastro P. et al . Prolonged expression and effective readministration of erythropoietin delivered with a fully deleted adenoviral vector.  Hum Gene Ther . 2000;  11 859-868
  • 83 Kim I H, Jozkowicz A, Piedra P A, Oka K, Chan L. Lifetime correction of genetic deficiency in mice with a single injection of helper-dependent adenoviral vector.  Proc Natl Acad Sci USA . 2001;  98 13282-13287
  • 84 Oka K, Pastore L, Kim I-H. et al . Long-term stable correction of low-density lipoprotein receptor-deficient mice with a helper-dependent adenoviral vector expressing the very low-density lipoprotein receptor.  Circulation . 2001;  103 1274-1281
  • 85 Bristol J A, Shirley P, Idamakanti N, Kaleko M, Connelly S. In vivo dose threshold effect of adenoviral-mediated factor VIII cone therapy in hemophiliac mice.  Mol Ther . 2000;  2 223-232
  • 86 Tao N, Gao G-P, Parr M. et al . Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver.  Mol Ther . 2001;  3 28-35
  • 87 Fang X, Zhang W-W, Sobol R E. et al . Studies in non-human primate and hemophilic dog models of a "gutless" adenovirus vector for treatment of hemophilia A (Abst).  Blood . 2000;  96 428a
  • 88 Brown B D, Shi G X, Grant F. et al . Preclinical trials of a helper-dependent adenoviral vector for the treatment of murine and canine models of hemophilia A (Abst).  Mol Ther . 2002;  5 S82
  • 89 A phase I single-dose, dose-escalation study of MiniAdFVIII vector in patients with severe hemophilia A Bethesda, MD: National Institutes of Health, Office of Biotechnology Activities; 2002. (On-line) Available: www4.od.nih.gov/oba/rac/ trialqueryform.asp
  • 90 Fang X, Andreason G, Hariharan M. et al .Pre-clinical efficacy and safety studies of a gutless adenovirus vector (MaxADFVIII) for treatment of hemophilia A. Presented at the XVIII ISTH Meeting. Paris, France, 2001, Abstract #OC2490
  • 91 Department of Health and Human Services, National Institutes of Health Recombinant DNA Advisory Committee. Minutes of Meeting. Bethesda, MD: National Institutes of Health; 2000. (On-line) Available: www4.od.nih.gov/oba/ rac/minutes/Sept00RACMin.pdf
  • 92 A phase I safety study in patients with severe hemophilia B (factor IX deficiency) using adeno-associated viral vector to deliver the gene for human factor IX into the liver Bethesda, MD: National Institutes of Health, Office of Biotechnology Activities; 2002. (On-line) Available: www4.od.nih.gov/ oba/rac/trialqueryform.asp
  • 93 Nakai H, Ohashi K, Arruda V. et al . A proposed rAAV-liver directed clinical trial for hemophilia B (Abst).  Blood . 2000;  96 798a
  • 94 Group F C S M. Interobserver and intraobserver variation in liver biopsy interpretation in patients with chronic hepatitis C.  Hepatology . 1994;  20 15-20
  • 95 Bedossa P, Poynard T, Group M CS. An algorithm for the grading of activity in chronic hepatitis C.  Hepatology . 1996;  24 289-293
  • 96 Boyce N. Trial halted after gene shows up in semen.  Nature . 2001;  414 677
  • 97 Summerford C, Samulski R J. Membrane-associated heparan sulphate proteoglycan is a receptor for adeno-associated virus type 2 virions.  J Virol . 1998;  72 1438-1445
  • 98 Department of Health and Human Services, National Institutes of Health Recombinant DNA Advisory Committee. Minutes of Meeting. Bethesda, MD: National Institutes of Health; 2001. (On-line) Available: www4.od.nih.gov/oba
  • 99 Department of Health and Human Services, National Institutes of Health Recombinant DNA Advisory Committee. Minutes of Meeting. Bethesda, MD: National Institutes of Health; 2002. (On-line) Available: www4.od.nih.gov/oba
  • 100 Biological Response Modifiers Advisory Committee. Issues Pertaining To Inadvertent Germline Transmission Of Gene Transfer Vectors. Gaithersburg, MD: FDA; 2002. (On-line) Available: www.fda.gov/ohrms/dockets/ac/02/briefing/ 3855B2 01.doc
  • 101 Schuettrumpf J, Liu Y-L, Herzog R W, High K A, Arruda V R. Effects of anticoagulant drugs on in vivo AAV mediated liver-directed gene transfer (Abst).  Mol Ther . 2002;  5 S40
  • 102 Donsante A, Vogler C, Muzyczka N. et al . Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors.  Gene Ther . 2001;  8 1343-1346
  • 103 Department of Health and Human Services, National Institutes of Health Recombinant DNA Advisory Committee. Minutes of Meeting. Bethesda, MD: National Institutes of Health; March 8, 2001. (On-line) Available: www4.od.nih/ oba/RAC/minutes/march82001.pdf
  • 104 Daly T, Lorenz R, Sands M S. Immunologic defect in a murine model of a lysosomal storage disease.  Pediatr Res . 2000;  47 757-762
  • 105 Dong J-Y, Fan P D, Frizzell R A. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus.  Hum Gene Ther . 1996;  7 2101-2112
  • 106 Chao H, Mao L, Bruce A T, Walsh C E. Sustained expression of human factor VIII in mice using a parvovirus-based vector.  Blood . 2000;  95 1594-1599
  • 107 Gao G-P, Alvira M, Wang L. et al . Novel adeno-associated viruses from Rhesus monkeys as vectors for human gene therapy.  Proc Natl Acad Sci USA . 2002;  99 11854-11859
  • 108 Tsui L V, Kelly M, Zayek N. et al . Production of human clotting factor IX without toxicity in mice after vascular delivery of a lentiviral vector.  Nat Biotechnol . 2002;  20 53-57
  • 109 Lin Y, Chang L, Solovey A. et al . Use of blood outgrowth endothelial cells for gene therapy for hemophilia A.  Blood . 2002;  99 457-462
  • 110 Barton-Davis E R, Cordier L, Shoturma D I, Leland S E, Sweeney H L. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice.  J Clin Invest . 1999;  104 369-370

1 *These include the fact that, in muscle, post-translational modifications become rate limiting at high MOIs55 and that risk of inhibitory antibody formation rises as the dose/site rises. 56

    >