Abstract
The hydroxyethylene dipeptide isosteres l -682,679, l -684,414, l -685,434,
and l -685,458 were synthesized in a few
steps by a sequence involving an allyltrichlorostannane coupling
with an α-amino aldehyde, followed by hydroboration of
the corresponding 1,2-syn and 1,2-anti amino alcohols to give the diols,
lactonization under TPAP conditions, lactone opening, and peptide
coupling with the desired amine or dipeptide amide. The present
synthetic approach represents a practical entry to a large range
of other dipeptide isosteres.
Key words
amino aldehydes - HIV - peptides - total
synthesis - lactones
References
<A NAME="RM04502SS-1A">1a </A>
Vacca JP.
Condra JH.
Drug Discov. Today
1997,
2:
261
<A NAME="RM04502SS-1B">1b </A>
Steele FR.
Nature Med.
1996,
2:
257
<A NAME="RM04502SS-1C">1c </A>
Huff JR.
J. Med. Chem.
1991,
34:
2305
<A NAME="RM04502SS-1D">1d </A>
Prasad JVNV.
Rich DH.
Tetrahedron
Lett.
1990,
31:
1803
<A NAME="RM04502SS-2">2 </A>
Wlodawer A.
Vondrasek J.
Annu. Rev. Biophys. Biomol. Struct.
1998,
27:
249
<A NAME="RM04502SS-3">3 </A>
Babine RE.
Bender SL.
Chem. Rev.
1997,
97:
1359
<A NAME="RM04502SS-4">4 </A>
Tomasselli AG.
Heinrikson RL.
Biochim. Biophys.
Acta
2000,
189
<A NAME="RM04502SS-5">5 </A> For a comparative quantitative structure-activity relationship
study on anti-HIV drugs, see:
Garg R.
Gupta SP.
Gao H.
Babu MS.
Debnath AK.
Hansch C.
Chem. Rev.
1999,
99:
3525
<A NAME="RM04502SS-6">6 </A>
Lyle TA.
Wiscount CM.
Guare JP.
Thompson WJ.
Anderson PS.
Darke PL.
Zugay JA.
Emini EA.
Schleif WA.
Quintero JC.
Dixion RAF.
Sigal IS.
Huff JR.
J.
Med. Chem.
1991,
34:
1228
<A NAME="RM04502SS-7">7 </A>
Panchagnula R.
Thomas NS.
Int. J. Pharm.
2000,
201:
131
For the synthesis of analogues of l -685,434, see:
<A NAME="RM04502SS-8A">8a </A>
Litera J.
Budesinsky M.
Urban J.
Soucek M.
Collect. Czech. Chem. Commun.
1998,
63:
231
<A NAME="RM04502SS-8B">8b </A>
Litera J.
Weber J.
Krizova I.
Pichova I.
Konvalinka J.
Fusek M.
Soucek M.
Collect.
Czech. Chem. Commun.
1998,
63:
541
<A NAME="RM04502SS-8C">8c </A>
Evans BE.
Rittle KE.
Homnick CF.
Springer JP.
Hirshfield J.
Veber DF.
J.
Org. Chem.
1985,
50:
4615
<A NAME="RM04502SS-9">9 </A>
Thompson WJ.
Fitzgerald PMD.
Holloway MK.
Emini EA.
Darke PL.
McKeever BM.
Schleif WA.
Quintero JC.
Zugay JA.
Tucker TJ.
Schwering JE.
Homnick CF.
Nunberg J.
Springer JP.
Huff JR.
J. Med. Chem.
1992,
35:
1685
<A NAME="RM04502SS-10">10 </A> For the synthesis of analogues of l -682,679, see:
de Solms SJ.
Giuliani EA.
Guare JP.
Vacca JP.
Sanders WM.
Graham SL.
Wiggins JM.
Darke PL.
Sigal IS.
Zugay JA.
Emini EA.
Schleif WA.
Quintero JC.
Anderson PS.
Huff JR.
J. Med. Chem.
1991,
34:
2852
<A NAME="RM04502SS-11">11 </A>
Evans J.
Chem.
Brit.
2001,
April:
47
<A NAME="RM04502SS-12">12 </A>
Pesti JA.
Chorvat RJ.
Huhn GF.
Chem. Innovation
2000,
October:
28
<A NAME="RM04502SS-13">13 </A>
de Clercq E.
Pure
Appl. Chem.
2001,
73:
55
<A NAME="RM04502SS-14">14 </A>
Ghosh AK.
Shin D.
Mathivanan P.
Chem.
Commun.
1999,
1025
<A NAME="RM04502SS-15">15 </A>
Li YM.
Xu M.
Lai MT.
Huang Q.
Castro JL.
DiMuzio-Mower J.
Harrison T.
Lellis C.
Nadin A.
Neduvelil JG.
Register RB.
Sardana MK.
Shearman MS.
Smith AL.
Shi XP.
Yin KC.
Shafer JA.
Gardell SJ.
Nature (London)
2000,
405:
689
<A NAME="RM04502SS-16">16 </A>
Li YM.
Lai MT.
Xu M.
Huang Q.
DiMuzio-Mower J.
Sardana MK.
Shi XP.
Yin KC.
Shafer JA.
Gardell SJ.
Proc. Natl. Acad.
Sci. U.S.A.
2000,
97:
6138
<A NAME="RM04502SS-17">17 </A>
Shearman MS.
Beher D.
Clarke EE.
Lewis HD.
Harrison T.
Hunt P.
Nadin A.
Smith AL.
Stevenson G.
Castro JL.
Biochemistry
2000,
39:
8698
<A NAME="RM04502SS-18">18 </A>
Nadin A.
López JMS.
Neduvelil JG.
Thomas SR.
Tetrahedron
2001,
57:
1861
<A NAME="RM04502SS-19">19 </A>
Dias LC.
Giacomini R.
J. Braz. Chem. Soc.
1998,
9:
357 ; Chem. Abstr. 1999 , 130 , 66177
(a)
Evans DA.
Coleman PJ.
Dias LC.
Angew
Chem., Int. Ed. Engl.
1997,
36:
2738
(b)
Evans DA.
Trotter BW.
Cote B.
Coleman PJ.
Dias LC.
Tyler AN.
Angew Chem., Int. Ed.
Engl.
1997,
36:
2744
<A NAME="RM04502SS-20">20 </A>
Dias LC.
Giacomini R.
Tetrahedron Lett.
1998,
39:
5343
<A NAME="RM04502SS-21">21 </A>
Dias LC.
Meira PRR.
Ferreira E.
Org. Lett.
1999,
1:
1335
<A NAME="RM04502SS-22">22 </A>
Dias LC.
Meira PRR.
Synlett
2000,
37
<A NAME="RM04502SS-23">23 </A>
Dias LC.
Ferreira E.
Tetrahedron Lett.
2001,
42:
7159
<A NAME="RM04502SS-24">24 </A>
Dias LC.
Ferreira AA.
Diaz G.
Synlett
2002,
1845
<A NAME="RM04502SS-25">25 </A>
Liu HJ.
Shia KS.
Shang X.
Zhu BY.
Tetrahedron
1999,
55:
3803
<A NAME="RM04502SS-27A">27a </A>
Narayanan BA.
Bunnelle WH.
Tetrahedron Lett.
1987,
28:
6261
<A NAME="RM04502SS-27B">27b </A>
Bunnelle WH.
Narayanan BA.
Org. Synth.
1990,
69:
89
<A NAME="RM04502SS-28">28 </A> (a)
Fehrentz JA.
Castro B.
Synthesis
1983,
676
<A NAME="RM04502SS-28">28 </A> (b)
Saari WS.
Fisher TE.
Synthesis
1990,
453
These aldehydes should be freshly prepared before
use. Attempts to purify aldehydes 13a -c by silica gel chromatography resulted
in partial racemization. Since the diastereoselectivity of the reactions
of these aldehydes with allylsilanes depends on their diastereomeric
purity, crude aldehydes were used in all of the studies described
in the text
For optical stability studies of N -protected α-amino aldehydes,
see:
<A NAME="RM04502SS-29A">29a </A>
Ito A.
Takahashi R.
Baba Y.
Chem Pharm.
Bull.
1975,
23:
3081
<A NAME="RM04502SS-29B">29b </A>
Garner P.
Park JM.
J. Org. Chem.
1987,
52:
2361
<A NAME="RM04502SS-29C">29c </A>
Jurczak J.
Golebiowski A.
Chem. Rev.
1989,
89:
149
<A NAME="RM04502SS-29D">29d </A>
Myers AG.
Zhong BY.
Movassaghi M.
Kung DW.
Lanman BA.
Kwon S.
Tetrahedron
Lett.
2000,
41:
1359
<A NAME="RM04502SS-30">30 </A> For a review of the synthesis of
vicinal amino alcohols, see:
Bergmeier SC.
Tetrahedron
2000,
56:
2561
<A NAME="RM04502SS-31">31 </A> For a review about recent advances
in the synthesis of peptides, see:
Nájera C.
Synlett
2002,
1388
<A NAME="RM04502SS-32">32 </A> For an interesting paper dealing
with the question of configurational stability at the stereogenic
center next to the aldehyde function in dipeptide aldehydes, see:
Reetz MT.
Griebenow N.
Liebigs
Ann. Chem.
1996,
335
<A NAME="RM04502SS-33">33 </A>
Benedetti F.
Miertus S.
Norbedo S.
Tossi A.
Zlatoidzky P.
J.
Org. Chem.
1997,
62:
9348
<A NAME="RM04502SS-34">34 </A>
Attempts to use allylsilanes 6 and 8 with other
Lewis acids (TiCl4 , BF3 ·OEt2 )
as well as attempts to mix these allylsilanes and the aldehydes 13a -c before
addition of SnCl4 led to poor yields, loss of the Boc
protecting group, and recovered starting material.
<A NAME="RM04502SS-35">35 </A> The influence of an intramolecular
hydrogen bond in the stereoselection of α-amino carbonyl
compounds has been described:
Pace RD.
Kabalka GW.
J. Org. Chem.
1995,
60:
4838
<A NAME="RM04502SS-36">36 </A>
Hoffman RV.
Maslouch N.
Cervantes-Lee F.
J.
Org. Chem.
2002,
67:
1045
<A NAME="RM04502SS-37A">37a </A>
Mitsunobu O.
Synthesis
1981.
p.1
<A NAME="RM04502SS-37B">37b </A>
Dodge JA.
Trujillo JI.
Presnell M.
J. Org. Chem.
1994,
59:
234
<A NAME="RM04502SS-37C">37c </A>
Martin SF.
Dodge JA.
Tetrahedron
Lett.
1991,
32:
3017
<A NAME="RM04502SS-38A">38a </A>
D’Aniello F.
Mann A.
Mattii D.
Taddei M.
J.
Org. Chem.
1994,
59:
3762
<A NAME="RM04502SS-38B">38b </A>
Ciapetti P.
Taddei M.
Ulivi P.
Tetrahedron
Lett.
1994,
35:
3183
<A NAME="RM04502SS-38C">38c </A>
Ciapetti P.
Falorni M.
Taddei M.
Tetrahedron
1996,
52:
7379
<A NAME="RM04502SS-39">39 </A> This compound has been prepared
earlier by Taddei and co-workers. The 1 H NMR
data for our compound is consistent with the described 1 H
NMR data reported by Taddei et al., but the 13 C
NMR data are not. According to Taddei et al., there are no chemical
shifts between 60 and 80 ppm, and we observed 2 signals, at 65 and
75 ppm, attributed to CHN and CH OH, respectively,
as expected:
D’Aniello F.
Taddei M.
J. Org. Chem.
1992,
57:
5247
<A NAME="RM04502SS-40">40 </A>
Alcohols 27 and 28 have
been prepared previously by Taddei and co-workers, but our 13 C
NMR data are not consistent with the described data reported in
that work, although consistent with the expected structure. See
Ref.
[40 ]
<A NAME="RM04502SS-41A">41a </A>
Ley SV.
Norman J.
Griffith WP.
Marsden SP.
Synthesis
1994,
639
<A NAME="RM04502SS-41B">41b </A>
Bloch R.
Brillet C.
Synlett
1991,
829
For other synthesis of these lactones,
see:
<A NAME="RM04502SS-42A">42a </A>
Ghosh AK.
Fidanze S.
J. Org.
Chem.
1998,
63:
6146
<A NAME="RM04502SS-42B">42b </A>
Ghosh AK.
McKee SP.
Thompson WJ.
Darke PL.
Zugay JC.
J. Org. Chem.
1993,
58:
1025
<A NAME="RM04502SS-42C">42c </A>
Pégorier L.
Larchevêque M.
Tetrahedron
Lett.
1995,
36:
2753
<A NAME="RM04502SS-42D">42d </A>
See also Ref.
[8c ]
<A NAME="RM04502SS-43A">43a </A>
Dess DB.
Martin JC.
J.
Am. Chem. Soc.
1991,
113:
7277
<A NAME="RM04502SS-43B">43b </A>
Dess DB.
Martin JC.
J.
Org. Chem.
1983,
48:
4155
<A NAME="RM04502SS-43C">43c </A>
Ireland RE.
Liu LB.
J.
Org. Chem.
1993,
58:
2899
<A NAME="RM04502SS-44">44 </A>
Heathcock CH.
Pirrung MC.
Sohn JE.
J. Org. Chem.
1979,
44:
4294
<A NAME="RM04502SS-45">45 </A>
Nadin A.
Owens AP.
Castro JL.
Harrison T.
Shearman MS.
Bioorg. Med. Chem. Lett.
2003,
13:
37
<A NAME="RM04502SS-47">47 </A>
After re-examining our original 13 C
NMR spectrum of l -685-458 (3 )
we observed that in our first publication in Synlett (see
Ref.
[25 ]
of this manuscript)
we had mistakenly referenced the central line of the residual DMSO
peak at 41.9 and not 39.7, as expected.