Fortschr Neurol Psychiatr 2003; 71(2): 72-83
DOI: 10.1055/s-2003-37216
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Funktionelle Kernspintomographie (fMRI) und Psychopharmakaeffekte: Eine Standortbestimmung

Functional Magnetic Resonance Imaging of Psychopharmacological Brain Effects: An UpdateD.  F.  Braus1, 2 , S.  Brassen1, 2 , E.  Weimer1 , H.  Tost1
  • 1NMR-Forschung am Zentralinstitut für Seelische Gesundheit, Mannheim
  • 2NeuroImage Nord, Psychiatrie, Universität Hamburg
Further Information

Publication History

Publication Date:
11 February 2003 (online)

Zusammenfassung

Die funktionelle Magnetresonanztomographie (fMRI) ist inzwischen ein etabliertes Verfahren zur nicht invasiven Untersuchung des lebenden Gehirns. Mit ihrer hohen zeitlichen und räumlichen Auflösung erlaubt die Methode die Erstellung funktioneller Aktivitätslandkarten während perzeptueller, kognitiver und emotionaler Leistungen.

In jüngster Zeit wird die fMRI auch zunehmend zur Analyse von regional spezifischen Veränderungen der Hirnaktivität durch psychoaktive Substanzen wie Nikotin, Kokain, Lorazepam, Scopolamin, Antipsychotika oder Antidepressiva eingesetzt. Tierexperimentelle Studien widmen sich dabei der Untersuchung von Psychopharmakaeffekten auf die MR-Signalveränderungen in verschiedenen Hirnarealen bei vergleichsweise hohen Magnetfeldstärken (> 4 Tesla). Dagegen konzentrieren sich fMRI-Studien an Probanden und psychiatrischen Patienten auf die zerebrale Aktivität nach einmaliger Substanzapplikation (single challenge) sowie adaptive Effekte des ZNS durch längerfristige psychotrope Medikation. Die Ergebnisse erlauben Rückschlüsse auf hirnphysiologische und neuropharmakologische Prozesse, die beispielsweise im Rahmen präklinischer Wirksamkeitsstudien, Responderanalysen und der Erforschung pathogenetischer Fragestellungen psychiatrischer Erkrankungen relevant sind.

Neben den Möglichkeiten, die dieses neue Verfahren bietet, ist seine Nutzung mit vielfältigen methodischen Anforderungen und Einschränkungen verknüpft. Dazu gehört die Kontrolle von Bewegungsartefakten und interferierenden psychologischen Variablen sowie die exakte Spezifikation des experimentellen Designs, standardisierte Analysen zur Datennachbearbeitung und die Berücksichtigung technischer Einschränkungen. Dieser Artikel gibt einen Überblick über das zugrunde gelegte Modell der Hirnfunktion, derzeitige Anwendungen, zukünftige Möglichkeiten und methodische Grenzen der fMRI in der Erforschung pharmakologischer Fragestellungen.

Abstract

Functional magnetic resonance imaging (fMRI) is well established for the examination of functional activity in the living brain. The method permits the development of functional activation maps during perceptual, cognitive and emotional efforts with a high temporal and spatial resolution.

As of late there has been growing interest in using this technique to investigate regionally specific brain activity following the administration of drugs such as nicotine, cocaine, lorazepam, scopolamine, antipsychotics or antidepressants. Studies in experimental animals investigate signal changes associated with the administration of psychopharmacological substances in different brain areas using a high magnetising field (> 4 Tesla). FMRI-studies in healthy human volunteers and psychiatric patients focus on cerebral activity following acute drug administration (single challenge) and on adaptive effects of the CNS due to long- term medication. Their results provide insights into brain physiology and neuropharmacological mechanisms which are in turn relevant for preclinical pharmacological studies, responder analyses and for the investigation of pathogenetic models in psychiatric diseases.

However, with these new opportunities, additional methodological considerations and limitations emerge. Besides the need of controlling motion artefacts, the influence of interfering psychological variables, an exact specification of the experimental design, a standardised analysis for data adjustment and technical limitations have to be considered. This article provides an overview of the underlying model of brain function, present applications, future possibilities and methodological limitations of fMRI for the understanding of human psychopharmacology.

Literatur

  • 1 Posner M I, Petersen S E, Fox P T, Raichle M E. Localization of cognitive operations in the human brain.  Science. 1988;  240 1627-1631
  • 2 Raichle M E, Grubb Jr R L, Gado M H, Eichling J O, Ter-Pogossian M M. Correlation between regional cerebral blood flow and oxidative metabolism. In vivo studies in man.  Arch Neurol. 1976;  33 523-526
  • 3 Grasby P M, Friston K J, Bench C J, Cowen P J, Frith C D, Liddle P F, Frackowiak R S, Dolan R J. The effect of the dopamine agonist, apomorphine, on regional cerebral blood flow in normal volunteers.  Psychol Med. 1993;  23 605-612
  • 4 Stehling M K, Firth J L, Worthington B S, Guilfoyle D N, Ordidge R J, Coxon R, Blamire A M, Gibbs P, Bullock P, Mansfield P. Observation of cerebrospinal fluid flow with echo-planar magnetic resonance imaging.  Br J Radiol. 1991;  64 89-97
  • 5 Stehling M K, Turner R, Mansfield P. Echo-planar imaging: magnetic resonance imaging in a fraction of a second.  Science. 1991;  254 43-50
  • 6 Belliveau J W, Kennedy Jr D N, McKinstry R C, Buchbinder B R, Weisskoff R M, Cohen M S, Vevea J M, Brady T J, Rosen B R. Functional mapping of the human visual cortex by magnetic resonance imaging.  Science. 1991;  254 716-719
  • 7 Habel U, Posse S, Schneider F. Funktionelle Kernspintomographie in der klinischen Psychologie und Psychiatrie.  Fortschr Neurol Psychiatr. 2002;  70 61-70
  • 8 Frackowiak R S, Friston K J, Frith C D, Dolan R J, Maziotta J C. Human brain function. San Diego; Boston; London: Academic Press 1997
  • 9 Goldman-Rakic P S. Topography of cognition: parallel distributed networks in primate association cortex.  Annu Rev Neurosci. 1988;  11 137-156
  • 10 Ross C A, Pearlson G D. Schizophrenia, the heteromodal association neocortex and development: potential for a neurogenetic approach.  Trends Neurosci. 1996;  19 171-176
  • 11 Engel A K, Fries P, Konig P, Brecht M, Singer W. Temporal binding, binocular rivalry, and consciousness.  Conscious Cogn. 1999;  8 128-151
  • 12 Frien A, Eckhorn R. Functional coupling shows stronger stimulus dependency for fast oscillations than for low-frequency components in striate cortex of awake monkey.  Eur J Neurosci. 2000;  12 1466-1478
  • 13 Singer W. The formation of cooperative cell assemblies in the visual cortex.  J Exp Biol. 1990;  153 177-197
  • 14 Slotnick S D, Moo L R, Kraut M A, Lesser R P, Hart Jr J. Interactions between thalamic and cortical rhythms during semantic memory recall in human.  Proc Natl Acad Sci U S A. 2002;  99 6440-6443
  • 15 Merzenich M. Long-term change of mind.  Science. 1998;  282 1062-1063
  • 16 Singer W. Development and plasticity of cortical processing architectures.  Science. 1995;  270 758-764
  • 17 Ogawa S, Lee T M. Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation.  Magn Reson Med. 1990;  16 9-18
  • 18 Ogawa S, Tank D W, Menon R, Ellermann J M, Kim S G, Merkle H, Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging.  Proc Natl Acad Sci U S A. 1992;  89 5951-5955
  • 19 Yang X, Hyder F, Shulman R G. Activation of single whisker barrel in rat brain localized by functional magnetic resonance imaging.  Proc Natl Acad Sci U S A. 1996;  93 475-478
  • 20 Jezzard P, Rauschecker J P, Malonek D. An in vivo model for functional MRI in cat visual cortex.  Magn Reson Med. 1997;  38 699-705
  • 21 Burdett N G, Menon D K, Carpenter T A, Jones J G, Hall L D. Visualisation of changes in regional cerebral blood flow (rCBF) produced by ketamine using long TE gradient-echo sequences: preliminary results.  Magn Reson Imaging. 1995;  13 549-553
  • 22 Chen Y C, Galpern W R, Brownell A L, Matthews R T, Bogdanov M, Isacson O, Keltner J R, Beal M F, Rosen B R, Jenkins B G. Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, microdialysis, and behavioral data.  Magn Reson Med. 1997;  38 389-398
  • 23 Zhang Z, Andersen A H, Avison M J, Gerhardt G A, Gash D M. Functional MRI of apomorphine activation of the basal ganglia in awake rhesus monkeys.  Brain Res. 2000;  852 290-296
  • 24 Stefanacci L, Reber P, Costanza J, Wong E, Buxton R, Zola S, Squire L, Albright T. fMRI of monkey visual cortex.  Neuron. 1998;  20 1051-1057
  • 25 Dubowitz D J, Chen D Y, Atkinson D J, Grieve K L, Gillikin B, Bradley Jr W G, Andersen R A. Functional magnetic resonance imaging in macaque cortex.  Neuroreport. 1998;  9 2213-2218
  • 26 Logothetis N K, Guggenberger H, Peled S, Pauls J. Functional imaging of the monkey brain.  Nat Neurosci. 1999;  2 555-562
  • 27 Hagino H, Tabuchi E, Kurachi M, Saitoh O, Sun Y, Kondoh T, Ono T, Torii K. Effects of D2 dopamine receptor agonist and antagonist on brain activity in the rat assessed by functional magnetic resonance imaging.  Brain Res. 1998;  813 367-373
  • 28 Preece M, Mukherjee B, Huang C L, Hall L D, Leslie R A, James M F. Detection of pharmacologically mediated changes in cerebral activity by functional magnetic resonance imaging: the effects of sulpiride in the brain of the anaesthetised rat.  Brain Res. 2001;  916 107-114
  • 29 Kuroki T, Meltzer H Y, Ichikawa J. Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens.  J Pharmacol Exp Ther. 1999;  288 774-781
  • 30 Santiago M, Machado A, Cano J. Regulation of prefrontal cortical dopamine release by dopamine receptor agonists and antagonists.  Eur J Pharmacol. 1993;  239 83-91
  • 31 Kleinschmidt A, Bruhn H, Kruger G, Merboldt K D, Stoppe G, Frahm J. Effects of sedation, stimulation, and placebo on cerebral blood oxygenation: a magnetic resonance neuroimaging study of psychotropic drug action.  NMR Biomed. 1999;  12 286-292
  • 32 Breiter H C, Gollub R L, Weisskoff R M, Kennedy D N, Makris N, Berke J D, Goodman J M, Kantor H L, Gastfriend D R, Riorden J P, Mathew R T, Rosen B R, Hyman S E. Acute effects of cocaine on human brain activity and emotion.  Neuron. 1997;  19 591-611
  • 33 Bartlett E J, Brodie J D, Simkowitz P, Dewey S L, Rusinek H, Wolf A P, Fowler J S, Volkow N D, Smith G, Wolkin A. et al . Effects of haloperidol challenge on regional cerebral glucose utilization in normal human subjects.  Am J Psychiatry. 1994;  151 681-686
  • 34 Stewart C A, Reid I C. Repeated ECS and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity.  Psychopharmacology (Berl). 2000;  148 217-223
  • 35 Madhav T R, Pei Q, Grahame-Smith D G, Zetterström T S. Repeated electroconvulsive shock promotes the sprouting of serotonergic axons in the lesioned rat hippocampus.  Neuroscience. 2000;  97 677-683
  • 36 Pariente J, Loubinoux I, Carel C, Albucher J F, Leger A, Manelfe C, Rascol O, Chollet F. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke.  Ann Neurol. 2001;  50 718-729
  • 37 Loubinoux I, Pariente J, Boulanouar K, Carel C, Manelfe C, Rascol O, Celsis P, Chollet F. A single dose of the serotonin neurotransmission agonist paroxetine enhances motor output: double-blind, placebo-controlled, fMRI study in healthy subjects.  Neuroimage. 2002;  15 26-36
  • 38 Schultz W, Dayan P, Montague P R. A neural substrate of prediction and reward.  Science. 1997;  275 1593-1599
  • 39 Bloom A S, Hoffmann R G, Fuller S A, Pankiewicz J, Harsch H H, Stein E A. Determination of drug-induced changes in functional MRI signal using a pharmacokinetic model.  Hum Brain Mapp. 1999;  8 235-244
  • 40 Stein E A, Pankiewicz J, Harsch H H, Cho J K, Fuller S A, Hoffmann R G, Hawkins M, Rao S M, Bandettini P A, Bloom A S. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study.  Am J Psychiatry. 1998;  155 1009-1015
  • 41 Flach K A, Adler L E, Gerhardt G A, Miller C, Bickford P, MacGregor R J. Sensory gating in a computer model of the CA3 neural network of the hippocampus.  Biol Psychiatry. 1996;  40 1230-1245
  • 42 Park S, Knopick C, McGurk S, Meltzer H Y. Nicotine impairs spatial working memory while leaving spatial attention intact.  Neuropsychopharmacology. 2000;  22 200-209
  • 43 Pich E M, Pagliusi S R, Tessari M, Talabot-Ayer D, Hooft van Huijsduijnen R, Chiamulera C. Common neural substrates for the addictive properties of nicotine and cocaine.  Science. 1997;  275 83-86
  • 44 Stein E A. fMRI: a new tool for the in vivo localization of drug actions in the brain.  J Anal Toxicol. 2001;  25 419-424
  • 45 Sperling R, Greve D, Dale A, Killiany R, Holmes J, Rosas H D, Cocchiarella A, Firth P, Rosen B, Lake S, Lange N, Routledge C, Albert M. Functional MRI detection of pharmacologically induced memory impairment.  Proc Natl Acad Sci U S A. 2002;  99 455-460
  • 46 Grasby P M, Frith C D, Paulesu E, Friston K J, Frackowiak R S, Dolan R J. The effect of the muscarinic antagonist scopolamine on regional cerebral blood flow during the performance of a memory task.  Exp Brain Res. 1995;  104 337-348
  • 47 Thiel C M, Henson R N, Morris J S, Friston K J, Dolan R J. Pharmacological modulation of behavioral and neuronal correlates of repetition priming.  J Neurosci. 2001;  21 6846-6852
  • 48 Furey M L, Pietrini P, Haxby J V. Cholinergic enhancement and increased selectivity of perceptual processing during working memory.  Science. 2000;  290 2315-2319
  • 49 Risch S C, McGurk S, Horner M D, Nahas Z, Owens S D, Molloy M, Gilliard C, Christie S, Markowitz J S, DeVane C L, Mintzer J, George M S. A double-blind placebo-controlled case study of the use of donepezil to improve cognition in a schizoaffective disorder patient: functional MRI correlates.  Neurocase. 2001;  7 105-110
  • 50 Braus D F, Ende G, Weber-Fahr W, Sartorius A, Krier A, Hubrich-Ungureanu P, Ruf M, Stuck S, Henn F A. Antipsychotic drug effects on motor activation measured by functional magnetic resonance imaging in schizophrenic patients.  Schizophr Res. 1999;  39 19-29
  • 51 Braus D F, Ende G, Tost H, Weber-Fahr W, Jatzko A, Schmitt A, Demirakca T, Ruf M. Funktionelle Kernspintomographie und Schizophrenie: Medikamenteneffekte, methodische Grenzen und Perspektiven.  Nervenheilkunde. 2000;  3 121-128
  • 52 Northoff G, Braus D F, Sartorius A, Khoram-Sefat D, Russ M, Eckert J, Herrig M, Leschinger A, Bogerts B, Henn F A. Reduced activation and altered laterality in two neuroleptic-naive catatonic patients during a motor task in functional MRI.  Psych Med. 1999;  29 997-1002
  • 53 Honey G D, Bullmore E T, Soni W, Varatheesan M, Williams S C, Sharma T. Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia.  Proc Natl Acad Sci U S A. 1999;  96 13432-13437
  • 54 Keefe R S, Roitman S E, Harvey P D, Blum C S, DuPre R L, Prieto D M, Davidson M, Davis K L. A pen-and-paper human analogue of a monkey prefrontal cortex activation task: spatial working memory in patients with schizophrenia.  Schizophr Res. 1995;  17 25-33
  • 55 Weinberger D R, Berman K F, Zec R F. Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence.  Arch Gen Psychiatry. 1986;  43 114-124
  • 56 Andreasen N C, O'Leary D S, Flaum M, Nopoulos P, Watkins G L, Boles P onto, Hichwa R D. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients.  Lancet. 1997;  349 1730-1734
  • 57 Andreasen N C, Nopoulos P, O'Leary D S, Miller D D, Wassink T, Flaum M. Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms.  Biol Psychiatry. 1999;  46 908-920
  • 58 Stephan K E, Magnotta V A, White T, Arndt S, Flaum M, O'Leary D S, Andreasen N C. Effects of olanzapine on cerebellar functional connectivity in schizophrenia measured by fMRI during a simple motor task.  Psychol Med. 2001;  31 1065-1078
  • 59 Purdon S E, Jones B D, Stip E, Labelle A, Addington D, David S R, Breier A, Tollefson G D. Neuropsychological change in early phase schizophrenia during 12 months of treatment with olanzapine, risperidone, or haloperidol. The Canadian Collaborative Group for research in schizophrenia.  Arch Gen Psychiatry. 2000;  57 249-258
  • 60 Weiser M, Shneider-Beeri M, Nakash N, Brill N, Bawnik O, Reiss S, Hocherman S, Davidson M. Improvement in cognition associated with novel antipsychotic drugs: a direct drug effect or reduction of EPS?.  Schizophr Res. 2000;  46 81-89
  • 61 Kalin N H, Davidson R J, Irwin W, Warner G, Orendi J L, Sutton S K, Mock B J, Sorenson J A, Lowe M, Turski P A. Functional magnetic resonance imaging studies of emotional processing in normal and depressed patients: effects of venlafaxine.  J Clin Psychiatry. 1997;  58 32-39
  • 62 Davidson R J, Irwin W. The functional neuroanatomy of emotion and affective style.  Trends Cogn Sci. 1999;  3 11-21
  • 63 Sheline Y I, Barch D M, Donnelly J M, Ollinger J M, Snyder A Z, Mintun M A. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study.  Biol Psychiatry. 2001;  50 651-658
  • 64 Whalen P J, Rauch S L, Etcoff N L, McInerney S C, Lee M B, Jenike M A. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge.  J Neurosci. 1998;  18 411-418
  • 65 Mentis M J, Alexander G E, Krasuski J, Pietrini P, Furey M L, Schapiro M B, Rapoport S I. Increasing required neural response to expose abnormal brain function in mild versus moderate or severe Alzheimer's disease: PET study using parametric visual stimulation.  Am J Psychiatry. 1998;  155 785-794
  • 66 Mentis M J, Horwitz B, Grady C L, Alexander G E, VanMeter J W, Maisog J M, Pietrini P, Schapiro M B, Rapoport S I. Visual cortical dysfunction in Alzheimer's disease evaluated with a temporally graded “stress test” during PET.  Am J Psychiatry. 1996;  153 32-40
  • 67 Kaufmann C, Elbel G K, Gössl C, Pütz B, Auer D P. Frequency dependence and gender effects in visual cortical regions involved in temporal frequency dependent pattern processing.  Hum Brain Mapp. 2001;  14 28-38
  • 68 Braus D F, Tost H, Hirsch J G, Gass A. Diffusions-Tensor-Bildgebung (DTI) und funktionelle Magnetresonanztomographie (fMRI) erweitern das Methodenspektrum in der psychiatrischen Forschung.  Der Nervenarzt. 2001;  72 384-390
  • 69 Mentis M J, Alexander G E, Grady C L, Horwitz B, Krasuski J, Pietrini P, Strassburger T, Hampel H, Schapiro M B, Rapoport S I. Frequency variation of a pattern-flash visual stimulus during PET differentially activates brain from striate through frontal cortex.  Neuroimage. 1997;  5 116-128
  • 70 Pietrini P, Furey M L, Alexander G E, Mentis M J, Dani A, Guazzelli M, Rapoport S I, Schapiro M B. Association between brain functional failure and dementia severity in Alzheimer 's disease: resting versus stimulation PET study.  Am J Psychiatry. 1999;  156 470-473
  • 71 Pietrini P, Guazzelli M, Basso G, Jaffe K, Grafman J. Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects.  Am J Psychiatry. 2000;  157 1772-1781
  • 72 Pietrini P, Alexander G E, Furey M L, Dani A, Mentis M J, Horwitz B, Guazzelli M, Shapiro M B, Rapoport S I. Cerebral metabolic response to passive audiovisual stimulation in patients with Alzheimer's disease and healthy volunteers assessed by PET.  J Nucl Med. 2000;  41 575-583
  • 73 Mentis M J, Sunderland T, Lai J, Connolly C, Krasuski J, Levine B, Friz J, Sobti S, Schapiro M, Rapoport S I. Muscarinic versus nicotinic modulation of a visual task. a PET study using drug probes.  Neuropsychopharmacology. 2001;  25 555-564
  • 74 Leopold D A, Plettenberg H K, Logothetis N K. Visual processing in the ketamine-anesthetized monkey. Optokinetic and blood oxygenation level-dependent responses.  Exp Brain Res. 2002;  143 359-372
  • 75 Logothetis N K, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal.  Nature. 2001;  412 150-157
  • 76 Gollub R L, Breiter H C, Kantor H, Kennedy D, Gastfriend D, Mathew R T, Makris N, Guimaraes A, Riorden J, Campbell T, Foley M, Hyman S E, Rosen B, Weisskoff R. Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects.  J Cereb Blood Flow Metab. 1998;  18 724-734
  • 77 Leuchter A F, Cook I A, Witte E A, Morgan M, Abrams M. Changes in brain function of depressed subjects during treatment with placebo.  Am J Psychiatry. 2002;  159 122-129
  • 78 Leslie R A, James M F. Pharmacological magnetic resonance imaging: a new application for functional MRI.  Trends Pharmacol Sci. 2000;  21 314-318
  • 79 Egan M F, Goldberg T E, Kolachana B S, Callicott J H, Mazzanti C M, Straub R E, Goldman D, Weinberger D R. Effect of COMT VAL108/158 Met genotype on frontal lobe function and risk for schizophrenia.  Proc Natl Acad Sci USA. 2001;  98 6917-6922
  • 80 Reese T, Bjelke B, Proszasz R, Baumann D, Bochelen D, Sauter A, Rudin M. Regional brain activation by bicuculline visualized by functional magnetic resonance imaging. Time-resolved assessment of bicuculline-induced changes in local cerebral blood volume using an intravascular contrast agent.  NMR Biomed. 2000;  13 43-49
  • 81 Braus D F, Krier A, Sartorius A, Ende G, Hubrich-Ungureanu P, Henn F A. Effects of Haloperidol and Lorazepam on fMRI Data in Healthy Subjects.  NeuroImage. 1997;  S367

Univ.-Prof. Dr. D. F. Braus

Universitätsklinik für Psychiatrie

Martinistr. 52

20246 Hamburg

Email: dfbraus@zi-mannheim.de

    >