Abstract
The gram scale syntheses of first and second generation (G1 and
G2) dendrons 1-4,
and 35, based on aryl and alkyl moieties,
by Suzuki-Miyaura cross-coupling are presented. Both a
divergent and an accelerated convergent route are applied. In addition,
first results on the synthesis of hyperbranched oligomers of AB2 monomer 19 are reported.
Key words
dendrimers - dendrons - Suzuki-Miyaura
cross-coupling - iododesilylation - building blocks
References
For general information about dendrimers,
see for example:
<A NAME="RT08602SS-1A">1a</A>
Newkome GR.
Moorefield CN.
Vögtle F.
Dendrimers and Dendrons
- Concepts, Syntheses, Applications
Wiley-VCH;
Weinheim:
2001.
<A NAME="RT08602SS-1B">1b</A>
Dendrimers
and other Dendritic Polymers
Fréchet JMJ.
Tomalia DA.
Wiley;
New York:
2001.
<A NAME="RT08602SS-2">2</A> For a review, see:
Schlüter AD.
Rabe JP.
Angew.
Chem.
2000,
112:
860 ; Angew. Chem., Int. Ed. 2000
, 39, 864
<A NAME="RT08602SS-3">3</A>
Peez RF.
Dermody DL.
Franchina JG.
Jones SJ.
Bruening ML.
Bergbreiter DE.
Crooks RM.
Langmuir
1998,
14:
4232 ; and references cited therein
<A NAME="RT08602SS-4">4</A>
Klopsch R.
Franke P.
Schlüter AD.
Chem.-Eur. J.
1996,
1330
<A NAME="RT08602SS-5">5</A>
Klopsch R.
Schlüter AD.
Eur. J.
Org. Chem.
1998,
2551
<A NAME="RT08602SS-6A">6a</A>
Klopsch R.
Koch S.
Schlüter AD.
Eur. J. Org. Chem.
1998,
1275
<A NAME="RT08602SS-6B">6b</A>
Modrakowski C.
Camacho Flores S.
Beinhoff M.
Schlüter AD.
Synthesis
2001,
2143
<A NAME="RT08602SS-6C">6c</A>
Zhang A.
Vetter S.
Schlüter AD.
Macromol. Chem. Phys.
2001,
202:
3301
<A NAME="RT08602SS-7A">7a</A>
Shu L.
Schäfer A.
Schlüter AD.
Macromolecules
2000,
33:
4321
<A NAME="RT08602SS-7B">7b</A>
Shu L.
Schlüter AD.
Macromol. Chem.
Phys.
2000,
201:
239
<A NAME="RT08602SS-8">8</A>
Vetter S.
Koch S.
Schlüter AD.
J. Polym. Sci. Part A: Polym. Chem.
2001,
39:
1940
<A NAME="RT08602SS-9">9</A>
Beinhoff M.
Weigel W.
Jurczok M.
Rettig W.
Modrakowski C.
Brüdgam I.
Hartl H.
Schlüter AD.
Eur. J.
Org. Chem.
2001,
3819
<A NAME="RT08602SS-10A">10a</A>
Miller TM.
Neenan TX.
Zayas R.
Bair HE.
J. Am. Chem. Soc.
1992,
114:
1018
<A NAME="RT08602SS-10B">10b</A>
Wiesler U.-M.
Weil T.
Müllen K.
Top.
Curr. Chem.
2001,
212:
1
See for example:
<A NAME="RT08602SS-11A">11a</A>
Xu Z.
Moore JS.
Acta Polym.
1994,
45:
83
<A NAME="RT08602SS-11B">11b</A>
Bharati P.
Patel U.
Kawaguchi T.
Pesak DJ.
Moore JS.
Macromolecules
1995,
28:
5955
<A NAME="RT08602SS-12A">12a</A>
Deb SK.
Maddux TM.
Yu L.
J. Am. Chem. Soc.
1997,
119:
9079
<A NAME="RT08602SS-12B">12b</A>
Pillow JNG.
Halim M.
Lupton JM.
Burn PL.
Samuel IDW.
Macromolecules
1999,
32:
5985
<A NAME="RT08602SS-12C">12c</A>
Meier H.
Lehmann M.
Kolb U.
Chem.-Eur.
J.
2000,
6:
2462
<A NAME="RT08602SS-12D">12d</A>
Segura JL.
Gomez R.
Martin N.
Guldi DM.
Org. Lett.
2001,
3:
2645
<A NAME="RT08602SS-13">13</A>
Newcome GR.
Moorefield CN.
Baker GR.
Johnson AL.
Behera RK.
Angew. Chem.,
Int. Ed. Engl. 1991
,
30, 1176; Angew. Chem.
1991,
103:
1205
<A NAME="RT08602SS-14">14</A> In a similar approach phenylenealkylene
dendrons with m-terphenylene branching
units were constructed:
Bo Z.
Schlüter AD.
J. Org. Chem.
2002,
67:
5327
<A NAME="RT08602SS-15A">15a</A>
Miyaura N.
Ishiyama T.
Sasaki H.
Ishikawa M.
Satoh M.
J. Am. Chem. Soc.
1989,
111:
314
<A NAME="RT08602SS-15B">15b</A>
Chemler SR.
Trauner D.
Danishefsky S.
Angew. Chem., Int. Ed.; 2001
, 40: 4544; Angew.
Chem.
2001,
113:
4676
<A NAME="RT08602SS-16A">16a</A>
Voit BI.
Acta Polym.
1995,
46:
87
<A NAME="RT08602SS-16B">16b</A>
Hult A.
Johansson M.
Malmstöm E.
Adv.
Polym. Sci.
1999,
143:
1
<A NAME="RT08602SS-17">17</A>
Wang F.
Kon AB.
Rauh RD.
Macromolecules
2000,
33:
5300
<A NAME="RT08602SS-18">18</A> For a statistical one-pot procedure,
see:
Wrobel D.
Wannagat U.
J.
Organomet. Chem.
1982,
225:
203
<A NAME="RT08602SS-19A">19a</A>
Félix G.
Dunoguès J.
Pisciotti F.
Calas R.
Angew. Chem.
1977,
89:
502
<A NAME="RT08602SS-19B">19b</A>
Weber WP.
Reactivity and Structure
Vol.
14:
Springer;
Berlin:
1983.
p.115-118
<A NAME="RT08602SS-20">20</A>
Since TMS groups are not protective
groups in the common sense, we prefer to use the term place holder,
which precisely defines their function.
<A NAME="RT08602SS-21A">21a</A>
Brown HC.
Organic
Synthesis via Boranes
Wiley;
New
York:
1975.
p.41
<A NAME="RT08602SS-21B">21b</A> For an overview concerning hydroborations,
see:
Zaidlewicz M. In Comprehensive Organometallic Chemistry
Vol.
7:
Wilkinson G.
Pergamon;
Oxford:
1982.
p.143-160
<A NAME="RT08602SS-22">22</A>
Two-dimensional Heteronuclear Multiple
Quantum Coherence NMR experiment.
For recent overviews on(accelerated)
convergent methods, see:
<A NAME="RT08602SS-23A">23a</A>
Grayson SM.
Fréchet JMJ.
Chem.
Rev.
2001,
101:
3819
<A NAME="RT08602SS-23B">23b</A>
Freeman AW.
Fréchet JMJ.
Dendrimers and other Dendritic Polymers
Fréchet JMJ.
Tomalia DA.
Wiley;
New
York:
2001.
p.91-110
Recently a one-pot synthesis of
an almost defect-free G4 dendron was reported:
<A NAME="RT08602SS-24A">24a</A>
Brauge L.
Magro G.
Caminade A.-M.
Majoral J.-P.
J. Am. Chem. Soc.
2001,
123:
6698
<A NAME="RT08602SS-24B">24b</A>
Brauge L.
Magro G.
Caminade A.-M.
Majoral J.-P.
J. Am. Chem. Soc.
2001,
123:
8446
<A NAME="RT08602SS-25">25</A>
Ek F, and
Wistrand LG. inventors; EP1013636. For 3,5-dibromoallylbenzene,
see also:
; Chem. Abstr. 2000, 133, 58600
<A NAME="RT08602SS-26">26</A>
A more practical reason was the unfavorable
synthesis protocol of the dibromo compound by Pd-catalyzed allylation
of (3,5-dibromophenyl)trimethylstannane. In order to avoid the handling
of tin compounds the diiodo analog was prepared by a different procedure.
<A NAME="RT08602SS-27">27</A>
Boudjouk P.
Kapfer CA.
J. Organomet. Chem.
1985,
296:
339
<A NAME="RT08602SS-28A">28a</A>
Willgerodt C.
Arnold E.
Ber.
Dtsch. Chem. Ges.
1901,
34:
3343
<A NAME="RT08602SS-28B">28b</A>
Schöberl U.
Magnera TF.
Harrison RM.
Fleischer F.
Pflug JL.
Schwab PFH.
Meng X.
Lipiak D.
Noll BC.
Allured VS.
Rudalevige T.
Lee S.
Michl J.
J. Am. Chem. Soc.
1997,
119:
3907
<A NAME="RT08602SS-28C">28c</A>
Nishide H.
Miyasaka M.
Tsuchida E.
J.
Org. Chem.
1998,
63:
7399
<A NAME="RT08602SS-29A">29a</A>
Benkeser RA.
Hickner RA.
Hoke DJ.
Thomas OH.
J. Am. Chem. Soc.
1958,
80:
5289
<A NAME="RT08602SS-29B">29b</A>
McDonagh AM.
Humphrey MG.
Samoc M.
Luther-Davies B.
Organometallics
1999,
18:
5195
<A NAME="RT08602SS-29C">29c</A>
Lustenberger P.
Diederich F.
Helv. Chim. Acta
2000,
83:
2865
<A NAME="RT08602SS-30">30</A>
Chen LS.
Chen GJ.
Tamborski C.
J.
Organomet. Chem.
1981,
215:
281
<A NAME="RT08602SS-31">31</A>
Tanemura K.
Suzuki T.
Horaguchi T.
J.
Chem. Soc., Chem. Commun.
1992,
979
<A NAME="RT08602SS-32">32</A>
Coppola GM.
Synthesis
1984,
1021
<A NAME="RT08602SS-33A">33a</A>
Ford KL.
Roskamp EJ.
Tetrahedron Lett.
1992,
33:
1135
<A NAME="RT08602SS-33B">33b</A>
Ford KL.
Roskamp EJ.
J.
Org. Chem.
1993,
58:
4142
<A NAME="RT08602SS-34">34</A>
Target molecule 28 was
also synthesized by reaction of the(expensive) 3,5-dibromobenzyl
bromide with allylmagnesium bromide.
See for example:
<A NAME="RT08602SS-35A">35a</A>
Jefferey T.
J.
Chem. Soc., Chem. Commun.
1984,
1287
<A NAME="RT08602SS-35B">35b</A>
Kang S.-K.
Lee H.-W.
Jang S.-B.
Kim T.-H.
Pyun S.-J.
J.
Org. Chem.
1996,
61:
2604
The Suzuki-Miyaura cross-coupling
of 34 with vinylic halides has been previously
described:
<A NAME="RT08602SS-36A">36a</A>
Ridgway BH.
Woerpel KA.
J.
Org. Chem.
1998,
63:
458
<A NAME="RT08602SS-36B">36b</A>
Trost BM.
Probst GD.
Schoop A.
J. Am. Chem. Soc.
1998,
120:
9228
<A NAME="RT08602SS-37">37</A>
Preliminary investigations on the
corresponding G3 dendron (not shown) encountered the additional
problem that the molar mass of this molecule could not be confirmed,
since the applied methods (EI, FAB, MALDI-TOF) only showed much
smaller fragments. The mass spectral analyses of TBDMS-protected
dendrons 3 and 4 point
to the sensitivity of the silyl group with the loss of methyl and tert-butyl groups.
<A NAME="RT08602SS-38">38</A>
Kim YH.
Webster OW.
Macromolecules
1992,
25:
5561
<A NAME="RT08602SS-39">39</A>
The molar mass distribution of hyperbranched poly(phenylene)s,
obtained by Suzuki cross-coupling of 3,5-dibromophenylboronic acid,
was reported to show a large dependence from the used solvent system.
The average number of repeating units was between 13 and 42 (7 examples),
in one example 206 repeating units were achieved.
[38]
<A NAME="RT08602SS-40">40</A> According to:
Hölter D.
Burgath A.
Frey H.
Acta
Polym.
1997,
48:
30
<A NAME="RT08602SS-41">41</A>
Nicolaou KC.
Patron AP.
Ajito K.
Richter PK.
Khatuya H.
Bertinato P.
Miller RA.
Tomaszewski MJ.
Chem.-Eur.
J.
1996,
2:
847
<A NAME="RT08602SS-42">42</A>
Day GM.
Howell OT.
Metzler MR.
Woodgate PD.
Austr.
J. Chem.
1997,
50:
425
<A NAME="RT08602SS-43">43</A>
Coulson DR.
Inorg.
Synth.
1972,
13:
121
<A NAME="RT08602SS-44">44</A> For an analogous procedure, see:
Chen GJ.
Tamborski C.
J.
Organomet. Chem.
1983,
251:
149
<A NAME="RT08602SS-45">45</A>
No reference data were found.