Semin intervent Radiol 2002; 19(4): 289-312
DOI: 10.1055/s-2002-36745
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Neurointerventional Materials

Christopher J. Moran1 , DeWitte T. Cross, III2 , Colin P. Derdeyn3
  • 1Neuroradiology Section, Mallinckrodt Institute of Radiology at Washington University Medical Center, St. Louis, Missouri
  • 2Department of Interventional Neuroradiology, Mallinckrodt Institute of Radiology at Washington University Medical Center, St. Louis, Missouri
  • 3Endovascular Surgical Neuroradiology, Neuroradiology Section, Mallinckrodt Institute of Radiology at Washington University Medical Center, St. Louis, Missouri
Further Information

Publication History

Publication Date:
21 January 2003 (online)


Neurointerventional procedures began with the mating of small balloons with small catheters to take advantage of blood flow to reach and treat high-flow lesions. The field grew with the development of microcatheters that were carried by flow to their destination. The flow of the fistula or arteriovenous malformation could then be obstructed. These advances led to explosive growth after the development of microguidewires and microcatheters. The interventionalist was no longer restricted to treating high-flow lesions but could access normal-flow or even reduced-flow lesions. Aneurysms could be filled with balloons, coils, or permanent liquids. Flow could be rearranged by deposition of platinum microcoils. With angioplasty or thrombolysis, reduced or absent flow could be restored to normal. Medications could now be delivered in the desired vessel distribution to treat tumors or vasospasm or to test the function of the territory supplied by the injected vessel. New embolic agents and innovative uses of existing agents have expanded the treatment options for numerous disorders. Physician and patient enthusiasm for these techniques and materials has spurred extensive commercial interest and innovation. The coming years will see the introduction of many more new devices and agents for the treatment of difficult intracranial processes. The only restraints will be the physical limitations of the materials and drugs developed to treat central nervous system disorders.


  • 1 Serbinenko F A. Balloon catheterization and occlusion of major cerebral vessels.  J Neurosurg . 1974;  41 125-145
  • 2 Debrun G, Lacour P, Caron J-P. Detachable balloon and calibrated-leak balloon techniques in the treatment of cerebral vascular lesions.  J Neurosurg . 1978;  48 635-649
  • 3 Kerber C. Balloon catheter with a calibrated leak; a new system for superselective angiography and occlusive catheter.  Radiology . 1976;  120 547-550
  • 4 Kerber C, Heilman C B. New calibrated-leak microcatheters for cyanoacrylate embolization and chemotherapy.  AJNR Am J Neuroradiol . 1985;  6 434-436
  • 5 Kikuchi Y, Strother C M, Boyer M. New catheter for endovascular interventional procedures.  Radiology . 1987;  165 870-871
  • 6 Dion J E, Duckwiler G R, Lylyk P. Progressive suppleness Pursil catheter: a new tool for superselective angiography and embolization.  AJNR Am J Neuroradiol . 1989;  10 1068-1070
  • 7 Chavis T D. FasTRACKER-18.  Neurosurgery . 1996;  38 1249-1250
  • 8 Moran C J, Kido D K, Cross III T D. Cerebral vascular angiography: indications, technique and normal anatomy of the head. In: Baum S, ed. Abrams Angiography, 4th ed Boston, MA: Little, Brown & Co. 1997: 241-283
  • 9 Moran C J, Milburn J M, Cross III T D. Randomized controlled trial of sheaths in diagnostic neuroangiography.  Radiology . 2001;  218 183-187
  • 10 Debrun G, Viñuela F V, Fox A J. Aspirin and systemic heparinization in diagnostic and interventional neuroradiology.  AJNR Am J Neuroradiol . 1982;  3 337-340
  • 11 Mabry C D, Thompson B W, Read R C, Campbell G S. Activated clotting time monitoring of intraoperative heparinization: our experience and comparison of two techniques.  Surgery . 1981;  90 889-895
  • 12 Zoarski G H, Mathis J M, Hebel J R. Performance characteristics of microcatheter systems in a standardized tortuous pathway.  AJNR Am J Neuroradiol . 1998;  19 1571-1576
  • 13 Derdeyn C P, Moran C P, Cross D T. Polyvinyl alcohol particle size and suspension characteristics.  AJNR Am J Neuroradiol . 1995;  16 1335-1343
  • 14 Repa I, Moradian G P, Dehner L P. Mortalities associated with use of a commercial suspension of polyvinyl alcohol.  Radiology . 1989;  170 395-399
  • 15 Barr J D, Lemley T J, Petrochko C N. Polyvinyl alcohol foam particle sizes and concentrations injectable through microcatheters.  J Vasc Interv Radiol . 1998;  9 113-118
  • 16 Purdy P D, Batjer H H, Risser R C, Samson D. Arteriovenous malformations of the brain: choosing embolic materials to enhance safety and ease of excision.  J Neurosurg . 1992;  77 217-222
  • 17 Sorimachi T, Koike, Takeuchi S. Embolization of cerebral arteriovenous malformations achieved with polyvinyl alcohol particles: angiographic reappearance and complications.  AJNR Am J Neuroradiol . 1999;  20 1323-1328
  • 18 Germano I M, Davis R L, Wilson C B, Hieshima G B. Histopathological follow-up study of 66 cerebral arteriovenous malformations after therapeutic embolization with polyvinyl alcohol.  J Neurosurg . 1992;  76 607-614
  • 19 Davidson G S, Tergbrugge K G. Histologic long-term follow-up after embolization with polyvinyl alcohol particles.  AJNR Am J Neuroradiol . 1995;  16 843-846
  • 20 Schmutz F, McAuliffe W, Anderson D M. Embolization of cerebral arteriovenous malformations with silk: histopathologic changes in hemorrhagic complications.  AJNR Am J Neuroradiol . 1997;  18 1233-1237
  • 21 Deveikis J P, Manz H G, Luessenhop A J. A clinical and neuropathologic study of silk suture as an embolic agent for brain arteriovenous malformations.  AJNR Am J Neuroradiol . 1994;  15 263-271
  • 22 Derdeyn C P, Graves V B, Salamat M S, Rappe A. "Collagen-coated" acrylic microspheres for embolotherapy: in vivo and in vitro characteristics.  AJNR Am J Neuroradiol . 1997;  18 647-653
  • 23 Kumar A J, Kaufman S L, Patt J. Preoperative embolization of hypervascular head and neck neoplasms using microfibrillar collagen.  AJNR Am J Neuroradiol . 1982;  3 163-168
  • 24 Fox A J, Lee D H, Pelz D M. A thrombotic mixture as a "polymerizing" agent.  AJNR Am J Neuroradiol . 1988;  9 1029
  • 25 Berenstein A, Russell E. Gelatin sponge in therapeutic neuroradiology: a subject review.  Radiology . 1981;  141 105-112
  • 26 Hilal S K, Khandji A G, Chi T L. Synthetic fiber-coated platinum coils successfully used for the endovascular treatment of arteriovenous malformations, aneurysms and direct arteriovenous fistulas of the CNS.  AJNR Am J Neuroradiol . 1988;  9 1030
  • 27 Graves V B, Rappe A H, Smith T P. An endovascular retrieving device for use in small vessels.  AJNR Am J Neuroradiol . 1993;  14 804-808
  • 28 Smith T P, Graves V B, Halbach V V. Microcatheter retrieval device for intravascular foreign body removal.  AJNR Am J Neuoradiol . 1993;  14 809-811
  • 29 Spiegel S M, Viñuela F, Goldwasser J M. Adjusting the polymerization time of isobutyl-2 cyanoacrylate.  AJNR Am J Neuroradiol . 1986;  7 109-112
  • 30 Jafar J J, Davis A J, Berenstein A. The effect of embolization with N-butyl cyanoacrylate prior to surgical resection of cerebral arteriovenous malformations.  J Neurosurg . 1993;  78 60-69
  • 31 Vinters H V, Lundie M J, Kaufmann J CE. Long-term pathological follow-up of cerebral arteriovenous malformations treated by embolization with bucrylate.  N Engl J Med . 1986;  314 477-483
  • 32 Brothers M F, Kaufmann J CE, Fox A J, Deveikis J P. N-butyl 2-cyanoacrylate-substitute for IBCA in interventional neuroradiology: histopathologic and polymerization time studies.  AJNR Am J Neuroradiol . 1989;  10 777-786
  • 33 Casasco A, Herbreteau D, Houdart E. Devascularization of craniofacial tumor by percutaneous tumor puncture.  AJNR Am J Neuroradiol . 1994;  15 1233-1239
  • 34 Casasco A, Houdart E, Biondi A. Major complications of percutaneous embolization of skull-base tumors.  AJNR Am J Neuroradiol . 1999;  20 179-181
  • 35 Yakes W F, Krauth L, Ecklund J. Ethanol endovascular management of brain arteriovenous malformations: initial results.  Neurosurgery . 1997;  40 1145-1154
  • 36 Yakes F, Rossi P, Odink H. Arteriovenous malformation management.  Cardiovasc Intervent Radiol . 1996;  19 65-71
  • 37 Yakes W F, Parker S H, Gibson M D. Alcohol embolotherapy of vascular malformations.  Semin Intervent Radiol . 1989;  6 146-161
  • 38 Dee R, Finkelstein J E. Treatment of varicose veins: sclerotherapy with compression or stripping with multiple ligations.  Angiology . 1977;  28 223-227
  • 39 Dubois J M, Sebag G H, De Prost Y. Soft-tissue venous malformations in children: percutaneous sclerotherapy with Ethibloc.  Radiology . 1991;  180 195-198
  • 40 Murayama Y, Viñuela F, Ulhoa A. Nonadhesive liquid embolic agent for cerebral arteriovenous malformations: preliminary histopathological studies in swine rete mirabile.  Neurosurgery . 1998;  48 1164-1175
  • 41 Murayama Y, Vinuela F, Jahan R. Nonadhesive liquid embolic agent for the treatment of cerebral arteriovenous malformations: long-term histopathological studies in swine rete mirabile and preliminary clinical results in North America.  J Neurosurg . 1999;  90 193A
  • 42 Mathis J M, Barr J D, Jungreis C A, Horton J A. Physical characteristics of balloon catheter systems used in temporary cerebral artery occlusion.  AJNR Am J Neuroradiol . 1994;  15 1831-1836
  • 43 Nelson M. A versatile, steerable, flow-guided catheter for delivery of detachable balloons.  AJNR Am J Neuroradiol . 1990;  11 657-658
  • 44 Higashida R T, Halback V V, Dormandy B. Endovascular treatment of intracranial aneurysms with a new silicone microballoon device: technical considerations and indications for therapy.  Radiology . 1990;  174 687-691
  • 45 Hawkins T D, Staz K F. The permeability of detachable latex rubber balloons; an in vitro study.  Invest Radiol . 1987;  22 969-972
  • 46 Taki W, Handa H, Yamagata S. Radiopaque solidifying liquids for releasable balloon technique: a technical note.  Surg Neurol . 1980;  13 140-142
  • 47 Monsein L H, Debrun G, Chazaly J R. Hydroxyethyl methylacrylate and latex balloons.  AJNR Am J Neuroradiol . 1990;  11 663-664
  • 48 Koenigsberg R A, Mysoki M, Weiss J. Risk of clot formation on femoral arterial sheaths maintained overnight for neuroangiographic procedures.  AJNR Am J Neuroradiol . 1999;  20 297-299
  • 49 Duda S H, Wiskirchen J, Erb M. Suture-mediated percutaneous closure of antegrade femoral arterial access sites in patients who have received full anticoagulation therapy.  Radiology . 1999;  210 47-52
  • 50 Morris P, Braden G. Neurointerventional experience with an arteriotomy suture device.  AJNR Am J Neuroradiol . 1999;  20 1706-1709