Semin Hear 2002; 23(4): 263-276
DOI: 10.1055/s-2002-35862
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Plasticity, Auditory Training, and Auditory Processing Disorders

Frank E. Musiek1 , Jennifer Shinn2 , Christine Hare1
  • 1Department of Communication Sciences and Otolaryngology, School of Medicine, University of Connecticut, Storrs, Connecticut
  • 2Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
04. Dezember 2002 (online)

ABSTRACT

Auditory training (AT) for the treatment of auditory processing disorders (APD) has generated considerable interest recently. There is emerging evidence that well conceived AT programs can improve higher auditory function. The plasticity of the brain underlies the success of AT. This article reviews brain plasticity and the role of plasticity in AT outcomes, and highlights key studies that provide insight into the clinical use of AT for APD.

REFERENCES

  • 1 Musiek F E, Berge B. A neuroscience view of auditory training/stimulation and central auditory processing disorders. In: Katz J, Masters MG, Stecker N, eds. Central Auditory Processing Disorders: Mostly Management Needham Heights, MA: Allyn & Bacon 1998: 15-32
  • 2 Lund R. Development and Plasticity of the Brain: An Introduction.  New York: Oxford University Press 1978
  • 3 Robertson D, Irvine D RF. Plasticity of frequency organization auditory cortex of guinea pigs with partial unilateral deafness.  J Comp Neurol . 1989;  282 456-471
  • 4 Hassamannova J, Myslivecek J, Novakova V. Effects of early auditory stimulation on cortical areas. In: Syka J, Aitkin K, eds. Neuronal Mechanisms of Hearing New York: Plenum Press 1981
  • 5 Schwaber M, Garraghty P, Morel A, Kaas J. Neuroplasticity of the adult primate auditory cortex following cochlear hearing loss.  Am J Otol . 1993;  14 252-258
  • 6 Scheich H. Auditory cortex: comparative aspects of maps and plasticity.  Current Opinion in Neurobiology . 1991;  1 236-247
  • 7 Chermak G, Musiek F. Central Auditory Disorders: New Perspectives.  San Diego, CA: Singular 1997
  • 8 Willot J. Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57BL/6 and CBA mice.  J Neurophysiol . 1986;  56 391-408
  • 9 Rajan R, Irvine D, Wise L, Heil P. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex.  J Comp Neurol . 1993;  338 17-49
  • 10 Kaas J. Plasticity of sensory representations in the auditory and other systems of adult mammals. In: Salvi R, Henderson D, Fiorino F, Colletti V, eds. Auditory System Plasticity and Regeneration New York: Thieme 1996: 213-223
  • 11 Recanzone G, Schreiner C, Merzenich M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys.  J Neurosci . 1993;  13 97-103
  • 12 Brainard M, Knudsen E. Experience-dependent plasticity in the inferior colliculus: a site for visual calibration in the neural representation of auditory space in the barn owl.  J Neurosci . 1993;  13 4589-4608
  • 13 Miller G, Knudsen E. Early auditory experience induces frequency specific adaptive plasticity in the forebrain gaze field of the barn owl.  J Neurophysiol . 2001;  85 2154-2194
  • 14 Gold J, Knudsen E. Abnormal auditory experience induces frequency-specific adjustments in unit tuning for binaural localization cues in the optic tectum of juvenile owls.  J Neurosci . 2000;  20 862-77
  • 15 Korte D, Rauschecker J. Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness.  J Neurophysiol . 1993;  70 1717-1721
  • 16 Irvine D, Rajan R, Brown M. Injury- and use-related plasticity in adult auditory cortex.  Audiology & Neuro-Otology . 2001;  6 192-195
  • 17 Silman S, Silverman C, Emmer A, Gelfand S. Adult onset auditory deprivation.  J Am Acad Audiol . 1992;  3 390-396
  • 18 Manrique M, Cervera-Paz F, Huarte A. Cerebral auditory plasticity and cochlear implants.  Int J Pediatr Otorhinolarygol . 1999;  49(Suppl 1) S193-S197
  • 19 Allum-Mecklenburg D, Babighian G. Cochlear implant performance as an indicator of auditory plasticity in humans. In: Salvi R, Henderson D, eds. Auditory System Plasticity and Regeneration New York: Thieme 1996: 395-404
  • 20 Labadie R, Carrasco V, Gilmer C, Pillsbury H. Cochlear implant performance in senior citizens.  Otolaryngol Head Neck Surg . 2000;  123 419-424
  • 21 Geier L, Barker M, Fisher L, Opie J. The effect of long-term deafness on speech recognition in postlingually deafened adult CLARION cochlear implant users.  Ann Otol Rhinol Laryngol . 1999;  177(Suppl) 80-83
  • 22 Nishimura H, Hashikawa K, Doi K. Sign language `heard' in the auditory cortex.  Nature . 1999;  397 116
  • 23 Kraus N, McGee T, Carrell T. Central auditory system plasticity associated with speech discrimination training.  J Cogn Neurosci . 1195;  7 25-32
  • 24 Kraus N. Speech sound perception, neurophysiology, and plasticity.  Int J Pediatric Otorhinolaryngol . 1999;  47 123-129
  • 25 Ponton C. Possible application of functional imaging of the human auditory system in the study of acclimatization and late onset deprivation.  Ear Hear . 1996;  17(Suppl) 78S-86S
  • 26 Ponton C, Moore J, Eggermont J. Prolonged deafness limits auditory system developmental plasticity: evidence from an evoked potentials study in children with cochlear implants.  Scand Audiol . 1999;  51(Suppl) 13-22
  • 27 Ponton C, Eggermont J, Kwong B, Don M. Maturation of human central auditory system activity: evidence from multi-channel evoked potentials.  Clin Neurophysiol . 2000;  111 220-236
  • 28 Tremblay K, Kraus N, Carrell T, McGee T. Central auditory system plasticity: generalization to novel stimuli following listening training.  J Acoust Soc Am . 1997;  102 3762-3773
  • 29 Tremblay K, Kraus N, McGee T. The time course of auditory perceptual learning: neurophysiological changes during speech-sound training.  Neuroreport . 1998;  9 3557-3560
  • 30 Tremblay K, Kraus N, Mcgee T, Ponton C, Otis B. Central auditory plasticity: changes in the N1-P2 complex after speech sound-training.  Ear Hear . 2001;  22 79-90
  • 31 Purdy S, Kelly A, Thorne P. Auditory evoked potentials as measures of plasticity in humans.  Audiology & Neuro-Otology . 2001;  6 211-215
  • 32 Jirsa R. The clinical utility of the P3 AERP in children with auditory processing disorders.  J Speech Hear Res . 1993;  35 903-912
  • 33 Koelsch S, Shroger E, Tervaniemi M. Superior pre-attentive auditory processing in musicians.  Neuroreport . 1999;  10 1309-1313
  • 34 Russeler J, Altenmuller E, Nager W, Kohlmetz C, Munte T. Event-related brain potentials to sound omissions differ in musicians and non-musicians.  Neurosci Lett . 2001;  308 33-36
  • 35 Jerger J, Musiek F E. Report of the consensus conference on the diagnosis of auditory processing disorders in school-aged children.  J Am Acad Audiol . 2000;  11 467-474
  • 36 Musiek F E, Baran J, Schochat E. Selected management approaches to central auditory processing disorders.  Scand Audiol . 1999;  28(Suppl 51) 63-76
  • 37 Ahissar E, Vaadia E, Ahissar M. Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context.  Science . 1992;  257 1412-1415
  • 38 Farmer M, Klein R. The evidence for a temporal processing deficit linked to dyslexia: a review.  Pschon Bull & Rev . 1995;  2 460-493
  • 39 Bornstein S, Musiek F. Implication of temporal processing for children with learning and language problems. In: Beasley D, ed. Contemporary Issues in Audition San Diego, CA: College Hill 1984: 25-54
  • 40 Nagarajan S, Mahncke H, Salz T. Cortical auditory signal processing in poor readers.  Proc Natl Acad Sci USA . 1999;  96 6483-6488
  • 41 Temple E, Poldrack R, Propopapas A. Disruption of the neural response to rapid acoustic stimuli in dyslexia: evidence from functional MRI.  Proc Natl Acad Sci USA . 2000;  97 13907-13912
  • 42 Temple E, Poldrack R, Salidis J. Disrupted neural responses to phonological and orthographical processing in dyslexic children: an fMRI study.  Neuroreport . 2001;  12 299-307
  • 43 Merzenich M, Jenkins W, Johnston P. Temporal processing deficits of language-learning impaired children ameliorated by training.  Science . 1996;  271 77-81
  • 44 Tallal P, Miller S, Bedi G. Language comprehension in language-learning impaired children improved with acoustically modified speech.  Science . 1996;  271 81-84
  • 45 Friel-Patti S, Frome-Loeb D, Gillam R. Looking ahead: an introduction to five exploratory studies of Fast ForWord.  Am J Speech Lang Pathol . 2001;  10 195-2002
  • 46 Frome-Loeb D, Stoke C, Fey M. Language changes associated with Fast ForWord language: evidence from case studies.  Am J Speech Lang Pathol . 2001;  10 216-230
  • 47 Thibodeau L, Friel-Patti S, Britt L. Psychoacoustic performance in children completing Fast ForWord training.  Am J Speech Lang Pathol . 2001;  10 248-257
  • 48 Gillam R, Frome-Loeb D, Friel-Patti S. Looking back: a summary of five exploratory studies of Fast ForWord.  Am J Speech Lang Pathol . 2001;  10 269-273
  • 49 Kujala T, Myllyviita K, Tervaniemi M. Basic auditory dysfunction in dyslexia as demonstrated by brain activity measurements.  Psychophysiology . 2000;  37 262-266
  • 50 Kujala T, Karma K, Ceponiene R. Plastic neural changes and reading improvement caused by audiovisual training in reading-impaired children.  PNAS . 2001;  98 10509-10514
  • 51 Tallal P, Merzenich M, Miller S, Jenkins W. Language learning impairments: integrating basic science, technology, and remediation.  Exp Brain Res . 1998;  123 210-219
  • 52 Musiek F E. Habilitation and management of auditory processing disorders: overview of selected procedures.  J Am Acad Audiol . 1999;  10 329-342
  • 53 Menning H, Roberts L E, Pantev C. Plastic changes in the auditory cortex induced by intensive frequency discrimination training.  Neuroreport . 2000;  11 817-822
  • 54 Naatanen R, Schroger E, Karakas S, Tervaniemei M, Paavilainen P. Development of a memory trace for a complex sound in the human brain.  Neuroreport . 1993;  4 503-506
  • 55 Sloan C. Treating Auditory Processing Difficulties in Children.  San Diego, CA: College Hill 1986
  • 56 Wheadon L. The influence of auditory training on behavioral and electrophysiologic test measures in children with central auditory processing disorders (Dissertation).  Auckland, New Zealand: University of Auckland 1999
  • 57 Miller G, Gildea P. How children learn words.  Scientific American . 1987;  257 94-99
  • 58 Musiek F E, Shochat E. Auditory training and central auditory processing disorders: a case study.  Semin Hear . 1998;  19 357-366
  • 59 Musiek F E, Pinheiro M. Dichotic speech tests in the detection of central auditory dysfunction. In: Pinheiro M, Musiek FE, eds. Assessment of Central Auditory Dysfunction: Foundations in Clinical Correlates Baltimore, MD: Williams & Wilkins 1985
  • 60 Katz J, Chertoff M, Sawusch R. Dichotic training, J Audit Res .  1984;  24 251-264
  • 61 Zattore R, Halpern A, Perry D, Meyer E, Evans A. Hearing in the mind's ear: a PET investigation of musical imagery and perception.  J Cognitive Neurosci . 1996;  8 29-46
  • 62 Bornstein S, Musiek F E. Implication of temporal processing for children with learning and language problems. In: Beasley D, ed. Audition in Childhood: Methods of Study San Diego, CA: College Hill Press 1984
    >